Télécharger la liste

Description du projet

relax is a program designed for the study of the dynamics of proteins and other macromolecules though the analysis of experimental NMR data. It supports exponential curve fitting for the calculation of the R1 and R2 relaxation rates, calculation of the NOE, reduced spectral density mapping, the Lipari and Szabo model-free analysis, study of domain motions via the N-state model (or ensemble analysis) and frame order dynamics theories using anisotropic NMR parameters such as RDCs and PCSs, the investigation of stereochemistry in dynamic ensembles, and the analysis of relaxation dispersion.

Système requise

System requirement is not defined
Information regarding Project Releases and Project Resources. Note that the information here is a quote from Freecode.com page, and the downloads themselves may not be hosted on OSDN.

2011-08-24 21:13 Retour à la liste release
1.3.12

Ceci est une version caractéristique majeure. Elle ajoute la possibilité d'exécuter détendre sur des clusters ou des grilles d'ordinateurs via le protocole MPI. Cette fusionne à Gary Thompson multi-processeurs branche, qui a débuté tout le chemin de retour en 2007. Le "multi" paquet introduit deux tissus processeur, la norme mono-processeur mode et le mode d'mpi4py utilisant le protocole MPI avec Python. L'analyse de code sans modèle a été parallélisé pour profiter des modes multi-processeurs, de manière significative accélérer les calculs sur des clusters avec une efficacité d'échelle quasi parfaite.
Tags: major feature release
This is a major feature release. It adds the ability to run relax on clusters or grids of computers via the MPI protocol. This merges in Gary Thompson's multi-processor branch, which was started all the way back in 2007. The "multi" package introduces two processor fabrics, the standard uni-processor mode and the mpi4py mode for using the MPI protocol with Python. The model-free analysis code has been parallelized to take advantage of the multi-processor modes, significantly speeding up calculations on clusters with near perfect scaling efficiency.

Project Resources