減色プログラム
Révision | dd7e7c9a31088a00784565d88555963ddee35639 (tree) |
---|---|
l'heure | 2011-05-21 05:41:53 |
Auteur | berupon <berupon@gmai...> |
Commiter | berupon |
changed color precision to double to decrease visual distortion.
(idk the reason but it's faster than single float...)
@@ -0,0 +1,138 @@ | ||
1 | +#pragma once | |
2 | + | |
3 | +struct Color4d | |
4 | +{ | |
5 | + __m128d v[2]; | |
6 | + | |
7 | + Color4d() { | |
8 | + ; | |
9 | + } | |
10 | + | |
11 | + Color4d(const Color4d& c) { | |
12 | + *this = c; | |
13 | + } | |
14 | + | |
15 | + Color4d(double r, double g, double b, double a) { | |
16 | + v[0] = _mm_setr_pd(r,g); | |
17 | + v[1] = _mm_setr_pd(b,a); | |
18 | + } | |
19 | + | |
20 | + Color4d& operator = (const Color4d& rhs) { | |
21 | + v[0] = rhs.v[0]; | |
22 | + v[1] = rhs.v[1]; | |
23 | + return *this; | |
24 | + } | |
25 | + | |
26 | + Color4d direct_product(const Color4d& rhs) const { | |
27 | + Color4d result; | |
28 | +#if 1 | |
29 | + result.v[0] = _mm_mul_pd(v[0], rhs.v[0]); | |
30 | + result.v[1] = _mm_mul_pd(v[1], rhs.v[1]); | |
31 | +#else | |
32 | + for (int i=0; i<3; i++) { | |
33 | + result[i] = (*this)[i] * rhs[i]; | |
34 | + } | |
35 | +#endif | |
36 | + return result; | |
37 | + } | |
38 | + | |
39 | + double dot_product(const Color4d& rhs) { | |
40 | +// http://www.icnet.ne.jp/~nsystem/simd_tobira/dpps.html | |
41 | + double result = 0; | |
42 | + for (int i=0; i<3; i++) { | |
43 | + result += (*this)[i] * rhs[i]; | |
44 | + } | |
45 | + return result; | |
46 | + } | |
47 | + | |
48 | + Color4d& operator += (const Color4d& rhs) { | |
49 | + v[0] = _mm_add_pd(v[0], rhs.v[0]); | |
50 | + v[1] = _mm_add_pd(v[1], rhs.v[1]); | |
51 | + return *this; | |
52 | + } | |
53 | + | |
54 | + Color4d& operator += (const Color4f& rhs) { | |
55 | + v[0] = _mm_add_pd(v[0], _mm_cvtps_pd(rhs.v)); | |
56 | + v[1] = _mm_add_pd(v[1], _mm_cvtps_pd(_mm_movehl_ps(rhs.v, rhs.v))); | |
57 | + return *this; | |
58 | + } | |
59 | + | |
60 | + Color4d operator + (const Color4d& rhs) { | |
61 | + Color4d result(*this); | |
62 | + result += rhs; | |
63 | + return result; | |
64 | + } | |
65 | + | |
66 | + Color4d& operator -= (const Color4d& rhs) { | |
67 | + v[0] = _mm_sub_pd(v[0], rhs.v[0]); | |
68 | + v[1] = _mm_sub_pd(v[1], rhs.v[1]); | |
69 | + return *this; | |
70 | + } | |
71 | + | |
72 | + Color4d operator - (const Color4d& rhs) { | |
73 | + Color4d result(*this); | |
74 | + result -= rhs; | |
75 | + return result; | |
76 | + } | |
77 | + | |
78 | + Color4d& operator *= (const Color4d& rhs) { | |
79 | + v[0] = _mm_mul_pd(v[0], rhs.v[0]); | |
80 | + v[1] = _mm_mul_pd(v[1], rhs.v[1]); | |
81 | + return *this; | |
82 | + } | |
83 | + | |
84 | + Color4d operator * (const Color4d& rhs) { | |
85 | + Color4d result(*this); | |
86 | + result *= rhs; | |
87 | + return result; | |
88 | + } | |
89 | + | |
90 | + Color4d& operator *= (double scalar) { | |
91 | + __m128d s = _mm_set1_pd(scalar); | |
92 | + v[0] = _mm_mul_pd(v[0], s); | |
93 | + v[1] = _mm_mul_pd(v[1], s); | |
94 | + return *this; | |
95 | + } | |
96 | + | |
97 | + Color4d operator * (double scalar) { | |
98 | + Color4d result(*this); | |
99 | + result *= scalar; | |
100 | + return result; | |
101 | + } | |
102 | + | |
103 | + double& operator[] (int idx) { | |
104 | + switch (idx) { | |
105 | + case 0: return v[0].m128d_f64[0]; | |
106 | + case 1: return v[0].m128d_f64[1]; | |
107 | + case 2: return v[1].m128d_f64[0]; | |
108 | + case 3: return v[1].m128d_f64[1]; | |
109 | + } | |
110 | + } | |
111 | + const double& operator[] (int idx) const { | |
112 | + switch (idx) { | |
113 | + case 0: return v[0].m128d_f64[0]; | |
114 | + case 1: return v[0].m128d_f64[1]; | |
115 | + case 2: return v[1].m128d_f64[0]; | |
116 | + case 3: return v[1].m128d_f64[1]; | |
117 | + } | |
118 | + } | |
119 | + | |
120 | + double norm_squared() { | |
121 | + double result = 0; | |
122 | + for (int i=0; i<3; i++) { | |
123 | + result += (*this)[i] * (*this)[i]; | |
124 | + } | |
125 | + return result; | |
126 | + } | |
127 | + | |
128 | + void zero() { | |
129 | + v[0] = _mm_setzero_pd(); | |
130 | + v[1] = _mm_setzero_pd(); | |
131 | + } | |
132 | +}; | |
133 | + | |
134 | +inline Color4d operator * (double scalar, const Color4d& c) { | |
135 | + Color4d tmp = c; | |
136 | + return tmp * scalar; | |
137 | +} | |
138 | + |
@@ -0,0 +1,13 @@ | ||
1 | +#include "stdafx.h" | |
2 | +#include "Color4f.h" | |
3 | + | |
4 | +#include "Color4d.h" | |
5 | + | |
6 | +Color4f& Color4f::operator = (const Color4d& rhs) | |
7 | +{ | |
8 | + v = _mm_movelh_ps( | |
9 | + _mm_cvtpd_ps(rhs.v[0]), | |
10 | + _mm_cvtpd_ps(rhs.v[1]) | |
11 | + ); | |
12 | + return *this; | |
13 | +} |
@@ -4,6 +4,8 @@ | ||
4 | 4 | |
5 | 5 | // http://www2.kobe-u.ac.jp/~lerl2/l_cc_p_10.1.008/doc/main_cls/mergedProjects/intref_cls/ |
6 | 6 | |
7 | +struct Color4d; | |
8 | + | |
7 | 9 | struct Color4f |
8 | 10 | { |
9 | 11 | __m128 v; |
@@ -25,6 +27,8 @@ struct Color4f | ||
25 | 27 | return *this; |
26 | 28 | } |
27 | 29 | |
30 | + Color4f& operator = (const Color4d& rhs); | |
31 | + | |
28 | 32 | Color4f direct_product(const Color4f& rhs) const { |
29 | 33 | Color4f result; |
30 | 34 | #if 1 |
@@ -178,6 +178,10 @@ | ||
178 | 178 | UniqueIdentifier="{4FC737F1-C7A5-4376-A066-2A32D752A2FF}" |
179 | 179 | > |
180 | 180 | <File |
181 | + RelativePath=".\Color4f.cpp" | |
182 | + > | |
183 | + </File> | |
184 | + <File | |
181 | 185 | RelativePath=".\lib.cpp" |
182 | 186 | > |
183 | 187 | </File> |
@@ -220,6 +224,10 @@ | ||
220 | 224 | > |
221 | 225 | </File> |
222 | 226 | <File |
227 | + RelativePath=".\Color4d.h" | |
228 | + > | |
229 | + </File> | |
230 | + <File | |
223 | 231 | RelativePath=".\Color4f.h" |
224 | 232 | > |
225 | 233 | </File> |
@@ -27,11 +27,6 @@ SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. | ||
27 | 27 | |
28 | 28 | #include "stdafx.h" |
29 | 29 | |
30 | -#include "Color4f.h" | |
31 | -#include "Array.h" | |
32 | - | |
33 | -typedef Array2D<Color4f> Image4f; | |
34 | - | |
35 | 30 | #include <algorithm> |
36 | 31 | #include <math.h> |
37 | 32 | #include <stdio.h> |
@@ -90,43 +85,43 @@ int _tmain(int argc, _TCHAR* argv[]) | ||
90 | 85 | |
91 | 86 | size_t width = imageInfo.width; |
92 | 87 | size_t height = imageInfo.height; |
93 | - Image4f image(width, height); | |
94 | - Color4f* pLine = image.pBuff_; | |
88 | + Image image(width, height); | |
89 | + Color* pLine = image.pBuff_; | |
95 | 90 | uint8_t* pSrcLine = p; |
96 | 91 | for (size_t y=0; y<height; ++y) { |
97 | 92 | for (size_t x=0; x<width; ++x) { |
98 | - float r = pSrcLine[x*3+0] / 255.0f; | |
99 | - float g = pSrcLine[x*3+1] / 255.0f; | |
100 | - float b = pSrcLine[x*3+2] / 255.0f; | |
101 | - pLine[x] = Color4f(r,g,b,0.0f); | |
93 | + double r = pSrcLine[x*3+0] / 255.0; | |
94 | + double g = pSrcLine[x*3+1] / 255.0; | |
95 | + double b = pSrcLine[x*3+2] / 255.0; | |
96 | + pLine[x] = Color(r,g,b,0.0); | |
102 | 97 | } |
103 | 98 | pLine += width; |
104 | 99 | pSrcLine += lineBytes; |
105 | 100 | } |
106 | - Color4f buff_filter1_weights[1*1]; | |
107 | - Color4f buff_filter3_weights[3*3]; | |
108 | - Color4f buff_filter5_weights[5*5]; | |
101 | + Color buff_filter1_weights[1*1]; | |
102 | + Color buff_filter3_weights[3*3]; | |
103 | + Color buff_filter5_weights[5*5]; | |
109 | 104 | |
110 | - Image4f filter1_weights(1, 1, buff_filter1_weights); | |
111 | - Image4f filter3_weights(3, 3, buff_filter3_weights); | |
112 | - Image4f filter5_weights(5, 5, buff_filter5_weights); | |
105 | + Image filter1_weights(1, 1, buff_filter1_weights); | |
106 | + Image filter3_weights(3, 3, buff_filter3_weights); | |
107 | + Image filter5_weights(5, 5, buff_filter5_weights); | |
113 | 108 | std::vector<uint8_t> buff_quantized(width * height); |
114 | 109 | Array2D<uint8_t> quantized_image(width, height, &buff_quantized[0]); |
115 | - Color4f palette[256]; | |
110 | + Color palette[256]; | |
116 | 111 | |
117 | - filter1_weights[0][0] = Color4f(1.0f, 1.0f, 1.0f, 0.0f); | |
112 | + filter1_weights[0][0] = Color(1.0, 1.0, 1.0, 0.0); | |
118 | 113 | |
119 | 114 | for (size_t i=0; i<num_colors; ++i) { |
120 | - palette[i] = Color4f( | |
121 | - ((float)rand())/RAND_MAX, | |
122 | - ((float)rand())/RAND_MAX, | |
123 | - ((float)rand())/RAND_MAX, | |
124 | - 0.0f | |
115 | + palette[i] = Color( | |
116 | + ((double)rand())/RAND_MAX, | |
117 | + ((double)rand())/RAND_MAX, | |
118 | + ((double)rand())/RAND_MAX, | |
119 | + 0.0 | |
125 | 120 | ); |
126 | 121 | } |
127 | 122 | |
128 | - Array3D<float>* coarse_variables; | |
129 | - float dithering_level = 0.09*log((float)image.width_*image.height_) - 0.04*log((float)num_colors) + 0.001; | |
123 | + Array3D<double>* coarse_variables; | |
124 | + double dithering_level = 0.09*log((double)image.width_*image.height_) - 0.04*log((double)num_colors) + 0.001; | |
130 | 125 | if (argc > 1+3) { |
131 | 126 | dithering_level = _ttof(argv[4]); |
132 | 127 | if (dithering_level <= 0.0) { |
@@ -143,12 +138,12 @@ int _tmain(int argc, _TCHAR* argv[]) | ||
143 | 138 | } |
144 | 139 | } |
145 | 140 | |
146 | - float stddev = dithering_level; | |
147 | - float sum = 0.0; | |
141 | + double stddev = dithering_level; | |
142 | + double sum = 0.0; | |
148 | 143 | for (int i=0; i<3; i++) { |
149 | 144 | for (int j=0; j<3; j++) { |
150 | - float w = exp(-sqrt((float)((i-1)*(i-1) + (j-1)*(j-1)))/(stddev*stddev)); | |
151 | - filter3_weights[i][j] = Color4f(w,w,w,0); | |
145 | + double w = exp(-sqrt((double)((i-1)*(i-1) + (j-1)*(j-1)))/(stddev*stddev)); | |
146 | + filter3_weights[i][j] = Color(w,w,w,0); | |
152 | 147 | sum += 3 * w; |
153 | 148 | } |
154 | 149 | } |
@@ -163,8 +158,8 @@ int _tmain(int argc, _TCHAR* argv[]) | ||
163 | 158 | sum = 0.0; |
164 | 159 | for (int i=0; i<5; i++) { |
165 | 160 | for (int j=0; j<5; j++) { |
166 | - float w = exp(-sqrt((float)((i-2)*(i-2) + (j-2)*(j-2)))/(stddev*stddev)); | |
167 | - filter5_weights[i][j] = Color4f(w,w,w,0); | |
161 | + double w = exp(-sqrt((double)((i-2)*(i-2) + (j-2)*(j-2)))/(stddev*stddev)); | |
162 | + filter5_weights[i][j] = Color(w,w,w,0); | |
168 | 163 | sum += 3 * w; |
169 | 164 | } |
170 | 165 | } |
@@ -177,7 +172,7 @@ int _tmain(int argc, _TCHAR* argv[]) | ||
177 | 172 | } |
178 | 173 | } |
179 | 174 | |
180 | - Image4f* filters[] = { | |
175 | + Image* filters[] = { | |
181 | 176 | NULL, |
182 | 177 | &filter1_weights, |
183 | 178 | NULL, |
@@ -203,7 +198,7 @@ int _tmain(int argc, _TCHAR* argv[]) | ||
203 | 198 | for (int y=0; y<height; y++) { |
204 | 199 | for (int x=0; x<width; x++) { |
205 | 200 | const uint8_t idx = quantized_image[y][x]; |
206 | - Color4f col = palette[idx]; | |
201 | + Color col = palette[idx]; | |
207 | 202 | c[2] = (unsigned char)(255*col[0]); |
208 | 203 | c[1] = (unsigned char)(255*col[1]); |
209 | 204 | c[0] = (unsigned char)(255*col[2]); |
@@ -1,5 +1,7 @@ | ||
1 | 1 | #include "stdafx.h" |
2 | 2 | |
3 | +#include "quantize.h" | |
4 | + | |
3 | 5 | #include <algorithm> |
4 | 6 | #include <math.h> |
5 | 7 | #include <stdio.h> |
@@ -11,11 +13,6 @@ | ||
11 | 13 | |
12 | 14 | using namespace std; |
13 | 15 | |
14 | -#include "Array.h" | |
15 | -#include "Color4f.h" | |
16 | - | |
17 | -typedef Array2D<Color4f> Image4f; | |
18 | - | |
19 | 16 | size_t compute_max_coarse_level(size_t width, size_t height) |
20 | 17 | { |
21 | 18 | // We want the coarsest layer to have at most MAX_PIXELS pixels |
@@ -29,12 +26,12 @@ size_t compute_max_coarse_level(size_t width, size_t height) | ||
29 | 26 | return result; |
30 | 27 | } |
31 | 28 | |
32 | -void fill_random(Array3D<float>& a) | |
29 | +void fill_random(Array3D<double>& a) | |
33 | 30 | { |
34 | 31 | for (size_t y=0; y<a.height_; ++y) { |
35 | 32 | for (size_t x=0; x<a.width_; ++x) { |
36 | 33 | for (size_t z=0; z<a.depth_; ++z) { |
37 | - a(x,y,z) = ((float)rand())/RAND_MAX; | |
34 | + a(x,y,z) = ((double)rand())/RAND_MAX; | |
38 | 35 | } |
39 | 36 | } |
40 | 37 | } |
@@ -42,7 +39,7 @@ void fill_random(Array3D<float>& a) | ||
42 | 39 | |
43 | 40 | void random_permutation( |
44 | 41 | size_t count, |
45 | - vector<size_t>& result | |
42 | + vector<int>& result | |
46 | 43 | ) |
47 | 44 | { |
48 | 45 | result.clear(); |
@@ -55,28 +52,28 @@ void random_permutation( | ||
55 | 52 | void random_permutation_2d( |
56 | 53 | size_t width, |
57 | 54 | size_t height, |
58 | - deque< pair<size_t, size_t> >& result | |
55 | + deque< pair<int, int> >& result | |
59 | 56 | ) |
60 | 57 | { |
61 | - vector<size_t> perm1d; | |
58 | + vector<int> perm1d; | |
62 | 59 | random_permutation(width*height, perm1d); |
63 | 60 | while (!perm1d.empty()) { |
64 | - size_t idx = perm1d.back(); | |
61 | + int idx = perm1d.back(); | |
65 | 62 | perm1d.pop_back(); |
66 | - result.push_back(pair<size_t,size_t>(idx % width, idx / width)); | |
63 | + result.push_back(pair<int,int>(idx % width, idx / width)); | |
67 | 64 | } |
68 | 65 | } |
69 | 66 | |
70 | -void init_image(Image4f& image) | |
67 | +void init_image(Image& image) | |
71 | 68 | { |
72 | - Color4f z; | |
69 | + Color z; | |
73 | 70 | z.zero(); |
74 | 71 | std::fill(image.pBuff_, image.pBuff_+image.width_*image.height_, z); |
75 | 72 | } |
76 | 73 | |
77 | 74 | void compute_b_array( |
78 | - const Image4f& filter_weights, | |
79 | - Image4f& b | |
75 | + const Image& filter_weights, | |
76 | + Image& b | |
80 | 77 | ) |
81 | 78 | { |
82 | 79 | // Assume that the pixel i is always located at the center of b, |
@@ -87,7 +84,7 @@ void compute_b_array( | ||
87 | 84 | int offset_y = (b.height_ - 1)/2 - radius_height; |
88 | 85 | for (int j_y=0; j_y<b.height_; ++j_y) { |
89 | 86 | for (int j_x=0; j_x<b.width_; ++j_x) { |
90 | - Color4f sum; | |
87 | + Color sum; | |
91 | 88 | sum.zero(); |
92 | 89 | for (int k_y=0; k_y < filter_weights.height_; ++k_y) { |
93 | 90 | for (int k_x = 0; k_x < filter_weights.width_; ++k_x) { |
@@ -109,7 +106,7 @@ void compute_b_array( | ||
109 | 106 | } |
110 | 107 | |
111 | 108 | __forceinline |
112 | -Color4f b_value(const Image4f& b, int i_x, int i_y, int j_x, int j_y) | |
109 | +Color b_value(const Image& b, int i_x, int i_y, int j_x, int j_y) | |
113 | 110 | { |
114 | 111 | int radius_width = (b.width_ - 1)/2; |
115 | 112 | int radius_height = (b.height_ - 1)/2; |
@@ -118,19 +115,19 @@ Color4f b_value(const Image4f& b, int i_x, int i_y, int j_x, int j_y) | ||
118 | 115 | if (k_x >= 0 && k_y >= 0 && k_x < b.width_ && k_y < b.height_) |
119 | 116 | return b[k_y][k_x]; |
120 | 117 | else { |
121 | - Color4f z; | |
118 | + Color z; | |
122 | 119 | z.zero(); |
123 | 120 | return z; |
124 | 121 | } |
125 | 122 | } |
126 | 123 | |
127 | -void compute_a_image(const Image4f& image, const Image4f& b, Image4f& a) | |
124 | +void compute_a_image(const Image& image, const Image& b, Image& a) | |
128 | 125 | { |
129 | 126 | int radius_width = (b.width_ - 1)/2; |
130 | 127 | int radius_height = (b.height_ - 1)/2; |
131 | 128 | for (int i_y = 0; i_y<a.height_; ++i_y) { |
132 | 129 | for (int i_x = 0; i_x<a.width_; ++i_x) { |
133 | - Color4f sum; | |
130 | + Color sum; | |
134 | 131 | sum.zero(); |
135 | 132 | for (int j_y = i_y - radius_height; j_y <= i_y + radius_height; ++j_y) { |
136 | 133 | if (j_y < 0) j_y = 0; |
@@ -149,14 +146,16 @@ void compute_a_image(const Image4f& image, const Image4f& b, Image4f& a) | ||
149 | 146 | } |
150 | 147 | |
151 | 148 | void sum_coarsen( |
152 | - const Image4f& fine, | |
153 | - Image4f& coarse | |
149 | + const Image& fine, | |
150 | + Image& coarse | |
154 | 151 | ) |
155 | 152 | { |
156 | 153 | for (size_t y=0; y<coarse.height_; ++y) { |
157 | 154 | for (size_t x=0; x<coarse.width_; ++x) { |
158 | - float divisor = 1.0; | |
159 | - Color4f val = fine[y*2][x*2]; | |
155 | + double divisor = 1.0; | |
156 | + Color val; | |
157 | + val.zero(); | |
158 | + val += fine[y*2][x*2]; | |
160 | 159 | if (x*2 + 1 < fine.width_) { |
161 | 160 | divisor += 1; val += fine[y*2][x*2 + 1]; |
162 | 161 | } |
@@ -172,9 +171,9 @@ void sum_coarsen( | ||
172 | 171 | } |
173 | 172 | } |
174 | 173 | |
175 | -Array2D<float> extract_vector_layer_2d(const Image4f& s, size_t k) | |
174 | +Array2D<double> extract_vector_layer_2d(const Image& s, size_t k) | |
176 | 175 | { |
177 | - Array2D<float> result(s.width_, s.height_); | |
176 | + Array2D<double> result(s.width_, s.height_); | |
178 | 177 | for (size_t y=0; y<s.height_; ++y) { |
179 | 178 | for (size_t x=0; x<s.width_; ++x) { |
180 | 179 | result[y][x] = s[y][x][k]; |
@@ -183,9 +182,9 @@ Array2D<float> extract_vector_layer_2d(const Image4f& s, size_t k) | ||
183 | 182 | return result; |
184 | 183 | } |
185 | 184 | |
186 | -vector<float> extract_vector_layer_1d(const Color4f* s, size_t sz, size_t k) | |
185 | +vector<double> extract_vector_layer_1d(const Color* s, size_t sz, size_t k) | |
187 | 186 | { |
188 | - vector<float> result(sz); | |
187 | + vector<double> result(sz); | |
189 | 188 | for (size_t i=0; i<sz; ++i) { |
190 | 189 | result[i] = s[i][k]; |
191 | 190 | } |
@@ -193,15 +192,15 @@ vector<float> extract_vector_layer_1d(const Color4f* s, size_t sz, size_t k) | ||
193 | 192 | } |
194 | 193 | |
195 | 194 | size_t best_match_color( |
196 | - const Array3D<float>& vars, | |
195 | + const Array3D<double>& vars, | |
197 | 196 | size_t i_x, |
198 | 197 | size_t i_y, |
199 | - const Color4f* palette, | |
198 | + const Color* palette, | |
200 | 199 | size_t num_colors |
201 | 200 | ) |
202 | 201 | { |
203 | 202 | size_t max_v = 0; |
204 | - float max_weight = vars(i_x,i_y,0); | |
203 | + double max_weight = vars(i_x,i_y,0); | |
205 | 204 | for (size_t v=1; v<num_colors; ++v) { |
206 | 205 | if (vars(i_x,i_y,v) > max_weight) { |
207 | 206 | max_v = v; |
@@ -211,38 +210,29 @@ size_t best_match_color( | ||
211 | 210 | return max_v; |
212 | 211 | } |
213 | 212 | |
214 | -void zoom(const Array3D<float>& small, Array3D<float>& big) | |
213 | +void zoom(const Array3D<double>& small, Array3D<double>& big) | |
215 | 214 | { |
216 | 215 | // Simple scaling of the weights array based on mixing the four |
217 | 216 | // pixels falling under each fine pixel, weighted by area. |
218 | 217 | // To mix the pixels a little, we assume each fine pixel |
219 | 218 | // is 1.2 fine pixels wide and high. |
220 | - for (size_t y=0; y<big.height_/2*2; ++y) { | |
221 | - for (size_t x=0; x<big.width_/2*2; ++x) { | |
222 | - float left = max(0.0, (x-0.1)/2.0); | |
223 | - float right = min(small.width_-0.001, (x+1.1)/2.0); | |
224 | - float top = max(0.0, (y-0.1)/2.0); | |
225 | - float bottom = min(small.height_-0.001, (y+1.1)/2.0); | |
226 | - size_t x_left = (size_t)floor(left); | |
227 | - size_t x_right = (size_t)floor(right); | |
228 | - size_t y_top = (size_t)floor(top); | |
229 | - size_t y_bottom = (size_t)floor(bottom); | |
230 | - float area = (right-left)*(bottom-top); | |
231 | - float inv_area = 1.0 / area; | |
232 | - float left2 = (ceil(left) - left); | |
233 | - float top2 = (ceil(top) - top); | |
234 | - float bottom2 = (bottom - floor(bottom)); | |
235 | - float right2 = (right - floor(right)); | |
236 | - float top_left_weight = left2 * top2 * inv_area; | |
237 | - float top_right_weight = right2 * top2 * inv_area; | |
238 | - float bottom_left_weight = left2 * bottom2 * inv_area; | |
239 | - float bottom_right_weight = right2 * bottom2 * inv_area; | |
240 | - float top_weight = (right-left) * top2 * inv_area; | |
241 | - float bottom_weight = (right-left) * bottom2 * inv_area; | |
242 | - float left_weight = (bottom-top) * left2 * inv_area; | |
243 | - float right_weight = (bottom-top) * right2 * inv_area; | |
244 | - for (size_t z=0; z<big.depth_; ++z) { | |
245 | - float val; | |
219 | + for (int y=0; y<big.height_/2*2; y++) { | |
220 | + for (int x=0; x<big.width_/2*2; x++) { | |
221 | + double left = max(0.0, (x-0.1)/2.0), right = min(small.width_-0.001, (x+1.1)/2.0); | |
222 | + double top = max(0.0, (y-0.1)/2.0), bottom = min(small.height_-0.001, (y+1.1)/2.0); | |
223 | + int x_left = (int)floor(left), x_right = (int)floor(right); | |
224 | + int y_top = (int)floor(top), y_bottom = (int)floor(bottom); | |
225 | + double area = (right-left)*(bottom-top); | |
226 | + double top_left_weight = (ceil(left) - left)*(ceil(top) - top)/area; | |
227 | + double top_right_weight = (right - floor(right))*(ceil(top) - top)/area; | |
228 | + double bottom_left_weight = (ceil(left) - left)*(bottom - floor(bottom))/area; | |
229 | + double bottom_right_weight = (right - floor(right))*(bottom - floor(bottom))/area; | |
230 | + double top_weight = (right-left)*(ceil(top) - top)/area; | |
231 | + double bottom_weight = (right-left)*(bottom - floor(bottom))/area; | |
232 | + double left_weight = (bottom-top)*(ceil(left) - left)/area; | |
233 | + double right_weight = (bottom-top)*(right - floor(right))/area; | |
234 | + for (int z=0; z<big.depth_; z++) { | |
235 | + double val; | |
246 | 236 | if (x_left == x_right && y_top == y_bottom) { |
247 | 237 | val = small(x_left,y_top,z); |
248 | 238 | } else if (x_left == x_right) { |
@@ -264,9 +254,9 @@ void zoom(const Array3D<float>& small, Array3D<float>& big) | ||
264 | 254 | } |
265 | 255 | |
266 | 256 | void compute_initial_s( |
267 | - Image4f& s, | |
268 | - const Array3D<float>& coarse_variables, | |
269 | - const Image4f& b | |
257 | + Image& s, | |
258 | + const Array3D<double>& coarse_variables, | |
259 | + const Image& b | |
270 | 260 | ) |
271 | 261 | { |
272 | 262 | init_image(s); |
@@ -280,8 +270,8 @@ void compute_initial_s( | ||
280 | 270 | __FUNCTION__, palette_size, coarse_width, coarse_height |
281 | 271 | ); |
282 | 272 | |
283 | - Color4f center_b = b_value(b,0,0,0,0); | |
284 | - Color4f zero_vector; | |
273 | + Color center_b = b_value(b,0,0,0,0); | |
274 | + Color zero_vector; | |
285 | 275 | zero_vector.zero(); |
286 | 276 | for (size_t v=0; v<palette_size; ++v) { |
287 | 277 | for (size_t alpha=v; alpha<palette_size; ++alpha) { |
@@ -290,17 +280,17 @@ void compute_initial_s( | ||
290 | 280 | } |
291 | 281 | for (int i_y=0; i_y<coarse_height; ++i_y) { |
292 | 282 | for (int i_x=0; i_x<coarse_width; ++i_x) { |
293 | - const float* p_icv = &coarse_variables(i_x, i_y, 0); | |
283 | + const double* p_icv = &coarse_variables(i_x, i_y, 0); | |
294 | 284 | const int max_j_x = min<int>(coarse_width, i_x - center_x + b.width_); |
295 | 285 | const int max_j_y = min<int>(coarse_height, i_y - center_y + b.height_); |
296 | 286 | for (size_t j_y=max<int>(0, i_y - center_y); j_y<max_j_y; ++j_y) { |
297 | 287 | for (int j_x=max<int>(0, i_x - center_x); j_x<max_j_x; ++j_x) { |
298 | 288 | if (i_x == j_x && i_y == j_y) continue; |
299 | - Color4f b_ij = b_value(b,i_x,i_y,j_x,j_y); | |
289 | + Color b_ij = b_value(b,i_x,i_y,j_x,j_y); | |
300 | 290 | for (size_t v=0; v<palette_size; ++v) { |
301 | - Color4f b_ij2 = b_ij * p_icv[v]; | |
302 | - const float* p_jcv = &coarse_variables(j_x, j_y, v); | |
303 | - Color4f* ps = s.pBuff_ + v * palette_size + v; | |
291 | + Color b_ij2 = b_ij * p_icv[v]; | |
292 | + const double* p_jcv = &coarse_variables(j_x, j_y, v); | |
293 | + Color* ps = s.pBuff_ + v * palette_size + v; | |
304 | 294 | // TODO: 変更画像、縦方向ではなく横方向に操作する。後で転置。 |
305 | 295 | // TODO: Color4fの全ての要素が同じなので、Array2D<Color4f> ではなく Array2D<float> で処理してみる。 |
306 | 296 | for (size_t alpha=v; alpha<palette_size; ++alpha) { |
@@ -318,12 +308,12 @@ void compute_initial_s( | ||
318 | 308 | } |
319 | 309 | |
320 | 310 | void update_s( |
321 | - Image4f& s, | |
322 | - const Array3D<float>& coarse_variables, | |
323 | - const Image4f& b, | |
311 | + Image& s, | |
312 | + const Array3D<double>& coarse_variables, | |
313 | + const Image& b, | |
324 | 314 | const int j_x, |
325 | 315 | const int j_y, |
326 | - const int alpha, | |
316 | + const size_t alpha, | |
327 | 317 | const double delta |
328 | 318 | ) |
329 | 319 | { |
@@ -332,14 +322,14 @@ void update_s( | ||
332 | 322 | const int coarse_height = coarse_variables.height_; |
333 | 323 | const int center_x = (b.width_-1) / 2; |
334 | 324 | const int center_y = (b.height_-1) / 2; |
335 | - const int max_i_x = min<int>(coarse_width, j_x + center_x + 1); | |
325 | + const int max_i_x = min(coarse_width, j_x + center_x + 1); | |
336 | 326 | const int max_i_y = min<int>(coarse_height, j_y + center_y + 1); |
337 | 327 | for (size_t i_y=max(0, j_y - center_y); i_y<max_i_y; ++i_y) { |
338 | 328 | for (size_t i_x=max(0, j_x - center_x); i_x<max_i_x; ++i_x) { |
339 | - const Color4f delta_b_ij = delta * b_value(b,i_x,i_y,j_x,j_y); | |
329 | + const Color delta_b_ij = delta * b_value(b,i_x,i_y,j_x,j_y); | |
340 | 330 | if (i_x == j_x && i_y == j_y) continue; |
341 | - Color4f* ps = s[alpha]; | |
342 | - const float* p_cv = &coarse_variables(i_x, i_y, 0); | |
331 | + Color* ps = s[alpha]; | |
332 | + const double* p_cv = &coarse_variables(i_x, i_y, 0); | |
343 | 333 | for (size_t v=0; v<=alpha; ++v) { |
344 | 334 | ps[v] += (*p_cv++) * delta_b_ij; |
345 | 335 | } |
@@ -355,10 +345,10 @@ void update_s( | ||
355 | 345 | } |
356 | 346 | |
357 | 347 | void refine_palette( |
358 | - Image4f& s, | |
359 | - const Array3D<float>& coarse_variables, | |
360 | - const Image4f& a, | |
361 | - Color4f* palette, | |
348 | + Image& s, | |
349 | + const Array3D<double>& coarse_variables, | |
350 | + const Image& a, | |
351 | + Color* palette, | |
362 | 352 | size_t num_colors |
363 | 353 | ) |
364 | 354 | { |
@@ -369,15 +359,15 @@ void refine_palette( | ||
369 | 359 | } |
370 | 360 | } |
371 | 361 | |
372 | - Color4f r[256]; | |
362 | + Color r[256]; | |
373 | 363 | for (size_t v=0; v<num_colors; ++v) { |
374 | - Color4f sum; | |
364 | + Color sum; | |
375 | 365 | sum.zero(); |
376 | 366 | for (size_t i_y=0; i_y<coarse_variables.height_; ++i_y) { |
377 | 367 | for (size_t i_x=0; i_x<coarse_variables.width_; ++i_x) { |
378 | - float cv = coarse_variables(i_x,i_y,v); | |
379 | - Color4f av = a[i_y][i_x]; | |
380 | - Color4f result = cv * av; | |
368 | + double cv = coarse_variables(i_x,i_y,v); | |
369 | + Color av = a[i_y][i_x]; | |
370 | + Color result = cv * av; | |
381 | 371 | sum += result; |
382 | 372 | } |
383 | 373 | } |
@@ -385,11 +375,11 @@ void refine_palette( | ||
385 | 375 | } |
386 | 376 | |
387 | 377 | for (size_t k=0; k<3; ++k) { |
388 | - Array2D<float> S_k = extract_vector_layer_2d(s, k); | |
389 | - vector<float> R_k = extract_vector_layer_1d(&r[0], num_colors, k); | |
390 | - vector<float> palette_channel = -1.0f * ((2.0f*S_k).matrix_inverse()) * R_k; | |
378 | + Array2D<double> S_k = extract_vector_layer_2d(s, k); | |
379 | + vector<double> R_k = extract_vector_layer_1d(&r[0], num_colors, k); | |
380 | + vector<double> palette_channel = -1.0 * ((2.0*S_k).matrix_inverse()) * R_k; | |
391 | 381 | for (size_t v=0; v<num_colors; ++v) { |
392 | - float val = palette_channel[v]; | |
382 | + double val = palette_channel[v]; | |
393 | 383 | if (val < 0) val = 0; |
394 | 384 | if (val > 1) val = 1; |
395 | 385 | palette[v][k] = val; |
@@ -404,15 +394,15 @@ void refine_palette( | ||
404 | 394 | } |
405 | 395 | |
406 | 396 | void compute_initial_j_palette_sum( |
407 | - Image4f& j_palette_sum, | |
408 | - const Array3D<float>& coarse_variables, | |
409 | - const Color4f* palette, | |
397 | + Image& j_palette_sum, | |
398 | + const Array3D<double>& coarse_variables, | |
399 | + const Color* palette, | |
410 | 400 | size_t num_colors |
411 | 401 | ) |
412 | 402 | { |
413 | 403 | for (size_t j_y=0; j_y<coarse_variables.height_; ++j_y) { |
414 | 404 | for (size_t j_x=0; j_x<coarse_variables.width_; ++j_x) { |
415 | - Color4f palette_sum; | |
405 | + Color palette_sum; | |
416 | 406 | palette_sum.zero(); |
417 | 407 | for (size_t alpha=0; alpha<num_colors; ++alpha) { |
418 | 408 | palette_sum += coarse_variables(j_x,j_y,alpha)*palette[alpha]; |
@@ -423,11 +413,11 @@ void compute_initial_j_palette_sum( | ||
423 | 413 | } |
424 | 414 | |
425 | 415 | void spatial_color_quant( |
426 | - Image4f& image, | |
427 | - Image4f& filter_weights, | |
416 | + Image& image, | |
417 | + Image& filter_weights, | |
428 | 418 | Array2D<uint8_t>& quantized_image, |
429 | - Color4f* palette, size_t num_colors, | |
430 | - Array3D<float>*& p_coarse_variables, | |
419 | + Color* palette, size_t num_colors, | |
420 | + Array3D<double>*& p_coarse_variables, | |
431 | 421 | double initial_temperature, |
432 | 422 | double final_temperature, |
433 | 423 | int temps_per_level, |
@@ -438,9 +428,9 @@ void spatial_color_quant( | ||
438 | 428 | compute_max_coarse_level(image.width_, image.height_); |
439 | 429 | size_t width2 = image.width_ >> max_coarse_level; |
440 | 430 | size_t height2 = image.height_ >> max_coarse_level; |
441 | - p_coarse_variables = new Array3D<float>(width2, height2, num_colors); | |
431 | + p_coarse_variables = new Array3D<double>(width2, height2, num_colors); | |
442 | 432 | // For syntactic convenience |
443 | - Array3D<float>& coarse_variables = *p_coarse_variables; | |
433 | + Array3D<double>& coarse_variables = *p_coarse_variables; | |
444 | 434 | fill_random(coarse_variables); |
445 | 435 | |
446 | 436 | double temperature = initial_temperature; |
@@ -448,13 +438,13 @@ void spatial_color_quant( | ||
448 | 438 | // Compute a_i, b_{ij} according to (11) |
449 | 439 | size_t extended_neighborhood_width = filter_weights.width_*2 - 1; |
450 | 440 | size_t extended_neighborhood_height = filter_weights.height_*2 - 1; |
451 | - Image4f b0(extended_neighborhood_width, extended_neighborhood_height); | |
441 | + Image b0(extended_neighborhood_width, extended_neighborhood_height); | |
452 | 442 | compute_b_array(filter_weights, b0); |
453 | - Image4f a0(image.width_, image.height_); | |
443 | + Image a0(image.width_, image.height_); | |
454 | 444 | compute_a_image(image, b0, a0); |
455 | 445 | |
456 | 446 | // Compute a_I^l, b_{IJ}^l according to (18) |
457 | - vector<Image4f*> a_vec, b_vec; | |
447 | + vector<Image*> a_vec, b_vec; | |
458 | 448 | a_vec.push_back(&a0); |
459 | 449 | b_vec.push_back(&b0); |
460 | 450 |
@@ -462,11 +452,11 @@ void spatial_color_quant( | ||
462 | 452 | for (coarse_level=1; coarse_level <= max_coarse_level; ++coarse_level) { |
463 | 453 | size_t radius_width = (filter_weights.width_ - 1)/2; |
464 | 454 | size_t radius_height = (filter_weights.height_ - 1)/2; |
465 | - Image4f* p_bi = new Image4f(max<size_t>(3, b_vec.back()->width_-2), max<size_t>(3, b_vec.back()->height_-2)); | |
466 | - Image4f& bi = *p_bi; | |
455 | + Image* p_bi = new Image(max<size_t>(3, b_vec.back()->width_-2), max<size_t>(3, b_vec.back()->height_-2)); | |
456 | + Image& bi = *p_bi; | |
467 | 457 | for (size_t J_y=0; J_y<bi.height_; ++J_y) { |
468 | 458 | for (size_t J_x=0; J_x<bi.width_; ++J_x) { |
469 | - Color4f sum; | |
459 | + Color sum; | |
470 | 460 | sum.zero(); |
471 | 461 | for (size_t i_y=radius_height*2; i_y<radius_height*2+2; ++i_y) { |
472 | 462 | for (size_t i_x=radius_width*2; i_x<radius_width*2+2; ++i_x) { |
@@ -482,8 +472,8 @@ void spatial_color_quant( | ||
482 | 472 | } |
483 | 473 | b_vec.push_back(p_bi); |
484 | 474 | |
485 | - Image4f* p_ai = new Image4f(image.width_ >> coarse_level, image.height_ >> coarse_level); | |
486 | - Image4f& ai = *p_ai; | |
475 | + Image* p_ai = new Image(image.width_ >> coarse_level, image.height_ >> coarse_level); | |
476 | + Image& ai = *p_ai; | |
487 | 477 | sum_coarsen(*a_vec.back(), ai); |
488 | 478 | a_vec.push_back(p_ai); |
489 | 479 | } |
@@ -497,17 +487,17 @@ void spatial_color_quant( | ||
497 | 487 | #endif |
498 | 488 | size_t iters_at_current_level = 0; |
499 | 489 | bool skip_palette_maintenance = false; |
500 | - Image4f s(num_colors, num_colors); | |
490 | + Image s(num_colors, num_colors); | |
501 | 491 | compute_initial_s(s, coarse_variables, *b_vec[coarse_level]); |
502 | - Image4f* j_palette_sum = | |
503 | - new Image4f(coarse_variables.width_, coarse_variables.height_); | |
492 | + Image* j_palette_sum = | |
493 | + new Image(coarse_variables.width_, coarse_variables.height_); | |
504 | 494 | compute_initial_j_palette_sum(*j_palette_sum, coarse_variables, palette, num_colors); |
505 | 495 | while (coarse_level >= 0 || temperature > final_temperature) { |
506 | 496 | // Need to reseat this reference in case we changed p_coarse_variables |
507 | - Array3D<float>& coarse_variables = *p_coarse_variables; | |
508 | - Image4f& a = *a_vec[coarse_level]; | |
509 | - Image4f& b = *b_vec[coarse_level]; | |
510 | - Color4f middle_b = b_value(b,0,0,0,0); | |
497 | + Array3D<double>& coarse_variables = *p_coarse_variables; | |
498 | + Image& a = *a_vec[coarse_level]; | |
499 | + Image& b = *b_vec[coarse_level]; | |
500 | + Color middle_b = b_value(b,0,0,0,0); | |
511 | 501 | #if TRACE |
512 | 502 | cout << "Temperature: " << temperature << endl; |
513 | 503 | #endif |
@@ -516,14 +506,14 @@ void spatial_color_quant( | ||
516 | 506 | size_t step_counter = 0; |
517 | 507 | for (size_t repeat=0; repeat<repeats_per_temp; ++repeat) { |
518 | 508 | size_t pixels_changed = 0, pixels_visited = 0; |
519 | - deque< pair<size_t, size_t> > visit_queue; | |
509 | + deque< pair<int, int> > visit_queue; | |
520 | 510 | random_permutation_2d(coarse_variables.width_, coarse_variables.height_, visit_queue); |
521 | 511 | |
522 | 512 | // Compute 2*sum(j in extended neighborhood of i, j != i) b_ij |
523 | 513 | |
524 | 514 | while (!visit_queue.empty()) { |
525 | 515 | // If we get to 10% above initial size, just revisit them all |
526 | - if (visit_queue.size() > coarse_variables.width_*coarse_variables.height_*11/10) { | |
516 | + if (visit_queue.size() > coarse_variables.width_*coarse_variables.height_*11.0/10) { | |
527 | 517 | visit_queue.clear(); |
528 | 518 | random_permutation_2d(coarse_variables.width_, coarse_variables.height_, visit_queue); |
529 | 519 | } |
@@ -533,7 +523,7 @@ void spatial_color_quant( | ||
533 | 523 | visit_queue.pop_front(); |
534 | 524 | |
535 | 525 | // Compute (25) |
536 | - Color4f p_i; | |
526 | + Color p_i; | |
537 | 527 | p_i.zero(); |
538 | 528 | for (int y=0; y<b.height_; ++y) { |
539 | 529 | for (int x=0; x<b.width_; ++x) { |
@@ -541,8 +531,8 @@ void spatial_color_quant( | ||
541 | 531 | int j_y = y - center_y + i_y; |
542 | 532 | if (i_x == j_x && i_y == j_y) continue; |
543 | 533 | if (j_x < 0 || j_y < 0 || j_x >= coarse_variables.width_ || j_y >= coarse_variables.height_) continue; |
544 | - Color4f b_ij = b_value(b, i_x, i_y, j_x, j_y); | |
545 | - Color4f j_pal = (*j_palette_sum)[j_y][j_x]; | |
534 | + Color b_ij = b_value(b, i_x, i_y, j_x, j_y); | |
535 | + Color j_pal = (*j_palette_sum)[j_y][j_x]; | |
546 | 536 | p_i += b_ij * j_pal; |
547 | 537 | } |
548 | 538 | } |
@@ -557,7 +547,8 @@ void spatial_color_quant( | ||
557 | 547 | // We can subtract an arbitrary factor to prevent overflow, |
558 | 548 | // since only the weight relative to the sum matters, so we |
559 | 549 | // will choose a value that makes the maximum e^100. |
560 | - double m = -(palette[v].dot_product(p_i + middle_b.direct_product(palette[v]))) / temperature; | |
550 | + Color p_i2; p_i2 = p_i; | |
551 | + double m = -(palette[v].dot_product(p_i2 + middle_b.direct_product(palette[v]))) / temperature; | |
561 | 552 | meanfield_logs.push_back(m); |
562 | 553 | if (m > max_meanfield_log) { |
563 | 554 | max_meanfield_log = m; |
@@ -572,7 +563,7 @@ void spatial_color_quant( | ||
572 | 563 | exit(-1); |
573 | 564 | } |
574 | 565 | size_t old_max_v = best_match_color(coarse_variables, i_x, i_y, palette, num_colors); |
575 | - Color4f& j_pal = (*j_palette_sum)[i_y][i_x]; | |
566 | + Color& j_pal = (*j_palette_sum)[i_y][i_x]; | |
576 | 567 | for (size_t v=0; v<num_colors; ++v) { |
577 | 568 | double new_val = meanfields[v]/meanfield_sum; |
578 | 569 | // Prevent the matrix S from becoming singular |
@@ -636,7 +627,7 @@ void spatial_color_quant( | ||
636 | 627 | { |
637 | 628 | --coarse_level; |
638 | 629 | if (coarse_level < 0) break; |
639 | - Array3D<float>* p_new_coarse_variables = new Array3D<float>( | |
630 | + Array3D<double>* p_new_coarse_variables = new Array3D<double>( | |
640 | 631 | image.width_ >> coarse_level, |
641 | 632 | image.height_ >> coarse_level, |
642 | 633 | num_colors); |
@@ -645,7 +636,7 @@ void spatial_color_quant( | ||
645 | 636 | p_coarse_variables = p_new_coarse_variables; |
646 | 637 | iters_at_current_level = 0; |
647 | 638 | delete j_palette_sum; |
648 | - j_palette_sum = new Image4f((*p_coarse_variables).width_, (*p_coarse_variables).height_); | |
639 | + j_palette_sum = new Image((*p_coarse_variables).width_, (*p_coarse_variables).height_); | |
649 | 640 | compute_initial_j_palette_sum(*j_palette_sum, *p_coarse_variables, palette, num_colors); |
650 | 641 | skip_palette_maintenance = true; |
651 | 642 | #ifdef TRACE |
@@ -660,7 +651,7 @@ void spatial_color_quant( | ||
660 | 651 | // This is normally not used, but is handy sometimes for debugging |
661 | 652 | while (coarse_level > 0) { |
662 | 653 | coarse_level--; |
663 | - Array3D<float>* p_new_coarse_variables = new Array3D<float>( | |
654 | + Array3D<double>* p_new_coarse_variables = new Array3D<double>( | |
664 | 655 | image.width_ >> coarse_level, |
665 | 656 | image.height_ >> coarse_level, |
666 | 657 | num_colors |
@@ -672,7 +663,7 @@ void spatial_color_quant( | ||
672 | 663 | |
673 | 664 | { |
674 | 665 | // Need to reseat this reference in case we changed p_coarse_variables |
675 | - Array3D<float>& coarse_variables = *p_coarse_variables; | |
666 | + Array3D<double>& coarse_variables = *p_coarse_variables; | |
676 | 667 | |
677 | 668 | for (size_t i_x = 0; i_x < image.width_; ++i_x) { |
678 | 669 | for (size_t i_y = 0; i_y < image.height_; ++i_y) { |
@@ -1,11 +1,18 @@ | ||
1 | 1 | #pragma once |
2 | 2 | |
3 | +#include "Array.h" | |
4 | +#include "Color4f.h" | |
5 | +#include "Color4d.h" | |
6 | + | |
7 | +typedef Color4d Color; | |
8 | +typedef Array2D<Color> Image; | |
9 | + | |
3 | 10 | void spatial_color_quant( |
4 | - Image4f& image, | |
5 | - Image4f& filter_weights, | |
11 | + Image& image, | |
12 | + Image& filter_weights, | |
6 | 13 | Array2D<uint8_t>& quantized_image, |
7 | - Color4f* palette, size_t num_colors, | |
8 | - Array3D<float>*& p_coarse_variables, | |
14 | + Color* palette, size_t num_colors, | |
15 | + Array3D<double>*& p_coarse_variables, | |
9 | 16 | double initial_temperature, |
10 | 17 | double final_temperature, |
11 | 18 | int temps_per_level, |