Révision | 0faad38925a85ed6f754ece6bdabc91eaafc7ac3 |
---|---|
Taille | 6,308 octets |
l'heure | 2012-10-04 19:52:47 |
Auteur | Lorenzo Isella |
Message de Log | A code to test the monte carlo integration of two overlapping circles. |
#!/usr/bin/env python
import scipy as s
# import pylab as p
import numpy as n
import sys
import string
import scipy.linalg as sl
def analytical_area(cluster_pro, R):
d=s.sqrt((cluster_pro[0,0]-cluster_pro[1,0])**2.+\
(cluster_pro[0,1]-cluster_pro[1,1])**2.)
print "d is, ", d
intersection=2.*R**2.*s.arccos(d/(2.*R))-0.5*d*s.sqrt(4.*R**2-d**2.)
res=2.*s.pi*R**2-intersection
return res
def montecarlo_calc_rect(N,cluster, radius):
rect=build_rect(cluster, radius)
print "rect is, ", rect
counter=0
for i in xrange(N):
pt=random_in_rect(rect)
counter=counter+accept_reject_point(pt, cluster, radius)
area=rect[2,0]*rect[2,1]
projected_area=area*counter/N
# print "the projected area is, ", projected_area
return projected_area
def build_rect(cluster, rmon):
extreme_left_x=min(cluster[:,0])-rmon
extreme_right_x=max(cluster[:,0])+rmon
extreme_lower_y=min(cluster[:,1])-rmon
extreme_upper_y=max(cluster[:,1])+rmon
Lx=abs(extreme_right_x-extreme_left_x)
Ly=abs(extreme_upper_y-extreme_lower_y)
res=s.array([[extreme_left_x, extreme_right_x],\
[extreme_lower_y, extreme_upper_y],\
[Lx,Ly]])
return res
def random_in_rect(rect):
x=s.random.uniform(rect[0,0],rect[0,1],1)[0]
y=s.random.uniform(rect[1,0],rect[1,1],1)[0]
res=s.array([[x, y]])
# res=s.vstack((x,y))
return(res)
def accept_reject_point(pt, cluster, radius):
distmin=min(s.ravel(euclidean_distances(pt,cluster)))
res=distmin<=radius
return (res)
def rotate_cluster(cluster):
random_rot_mat= random_rot()
n_row_col=s.shape(cluster)
cluster_rot=s.zeros(s.prod(n_row_col)).reshape((n_row_col[0],\
n_row_col[1]))
for i in s.arange(n_row_col[0]):
cluster_rot[i,:]=s.dot(random_rot_mat, cluster[i,:])
return cluster_rot
def random_rot():
theta=s.arccos(1.-2.*s.random.uniform(0.,1.,1)[0])-s.pi/2.
phi=s.random.uniform(-s.pi,s.pi,1)[0]
psi=s.random.uniform(-s.pi,s.pi,1)[0]
oneone=s.cos(theta)*s.cos(psi)
onetwo=-s.cos(phi)*s.sin(psi)+s.sin(phi)*s.sin(theta)*s.cos(psi)
onethree=s.sin(phi)*s.sin(psi)+s.cos(phi)*s.sin(theta)*s.cos(psi)
twoone= s.cos(theta)*s.sin(psi)
twotwo=s.cos(phi)*s.cos(psi)+s.sin(phi)*s.sin(theta)*s.sin(psi)
twothree=-s.sin(phi)*s.cos(psi)+s.cos(phi)*s.sin(theta)*s.sin(psi)
threeone=-s.sin(theta)
threetwo=s.sin(phi)*s.cos(theta)
threethree=s.cos(phi)*s.cos(theta)
my_mat=s.zeros(9).reshape((3,3))
my_mat[0,0]=oneone
my_mat[0,1]=onetwo
my_mat[0,2]=onethree
my_mat[1,0]=twoone
my_mat[1,1]=twotwo
my_mat[1,2]=twothree
my_mat[2,0]=threeone
my_mat[2,1]=threetwo
my_mat[2,2]=threethree
return my_mat
def euclidean_distances(X, Y, Y_norm_squared=None, squared=False):
"""
Considering the rows of X (and Y=X) as vectors, compute the
distance matrix between each pair of vectors.
Parameters
----------
X: array of shape (n_samples_1, n_features)
Y: array of shape (n_samples_2, n_features)
Y_norm_squared: array [n_samples_2], optional
pre-computed (Y**2).sum(axis=1)
squared: boolean, optional
This routine will return squared Euclidean distances instead.
Returns
-------
distances: array of shape (n_samples_1, n_samples_2)
Examples
--------
>>> from scikits.learn.metrics.pairwise import euclidean_distances
>>> X = [[0, 1], [1, 1]]
>>> # distrance between rows of X
>>> euclidean_distances(X, X)
array([[ 0., 1.],
[ 1., 0.]])
>>> # get distance to origin
>>> euclidean_distances(X, [[0, 0]])
array([[ 1. ],
[ 1.41421356]])
"""
# should not need X_norm_squared because if you could precompute that as
# well as Y, then you should just pre-compute the output and not even
# call this function.
if X is Y:
X = Y = n.asanyarray(X)
else:
X = n.asanyarray(X)
Y = n.asanyarray(Y)
if X.shape[1] != Y.shape[1]:
raise ValueError("Incompatible dimension for X and Y matrices")
XX = n.sum(X * X, axis=1)[:, n.newaxis]
if X is Y: # shortcut in the common case euclidean_distances(X, X)
YY = XX.T
elif Y_norm_squared is None:
YY = Y.copy()
YY **= 2
YY = n.sum(YY, axis=1)[n.newaxis, :]
else:
YY = n.asanyarray(Y_norm_squared)
if YY.shape != (Y.shape[0],):
raise ValueError("Incompatible dimension for Y and Y_norm_squared")
YY = YY[n.newaxis, :]
# TODO:
# a faster cython implementation would do the dot product first,
# and then add XX, add YY, and do the clipping of negative values in
# a single pass over the output matrix.
distances = XX + YY # Using broadcasting
distances -= 2 * n.dot(X, Y.T)
distances = n.maximum(distances, 0)
if squared:
return distances
else:
return n.sqrt(distances)
euclidian_distances = euclidean_distances # both spelling for backward compat
def find_CM(cluster):
CM=s.mean(cluster, axis=0)
return CM
def relocate_cluster(cluster):
cluster_shift=find_CM(cluster)
cluster[:,0]=cluster[:,0]-cluster_shift[0]
cluster[:,1]=cluster[:,1]-cluster_shift[1]
cluster[:,2]=cluster[:,2]-cluster_shift[2]
return cluster
def project_cluster_xy(cluster):
new_clust=cluster[:,0:2]
return new_clust
###################################
R=1. #monomer radius
N=30000
ini_cluster=s.arange(6).reshape((2,3))*1.
ini_cluster[0,0]=4.
ini_cluster[0,1]=0.
ini_cluster[0,2]=0.
ini_cluster[1,0]=2.
ini_cluster[1,1]=0.
ini_cluster[1,2]=0.
ini_cluster=relocate_cluster(ini_cluster)
print "ini_cluster is, ", ini_cluster
rotated_clust=rotate_cluster(ini_cluster)
print "rotated_clust is, ", rotated_clust
projected_clust=project_cluster_xy(rotated_clust)
print "projected_clust is, ", projected_clust
print "N is, ", N
area=montecarlo_calc_rect(N,projected_clust, R)
print "area is, ", area
area_exact=analytical_area(projected_clust, R)
print "The analytical area of the projected cluster is, ", area_exact
rel_err=abs(area-area_exact)/area_exact*100.
print "the relative (percentual!) error is, ", rel_err
print "So far so good"