Révision | 6802b53f4d9935e1e945f82ad885f4751502e9b2 |
---|---|
Taille | 8,429 octets |
l'heure | 2022-06-08 21:40:14 |
Auteur | Lorenzo Isella |
Message de Log | I improved some tables and plots. |
---
output: word_document
---
```{r, scoreboard, echo=FALSE, eval=TRUE}
options( scipen = 16 )
options(tidyverse.quiet = TRUE)
suppressWarnings(suppressMessages(library(janitor)))
suppressWarnings(suppressMessages(library(viridis)))
suppressWarnings(suppressMessages(library(scales)))
## suppressWarnings(suppressMessages(library(treemap)))
suppressWarnings(suppressMessages(library(flextable)))
library(tidyverse, warn.conflicts = FALSE)
library(janitor)
library(viridis)
library(scales)
## library(treemap)
library(stringi)
library(flextable)
source("/home/lorenzo/myprojects-hg/R-codes/stat_lib.R")
sel_ms <- state
country <- iso_map_eu27 %>%
filter(iso2==sel_ms) %>%
pull(country)
fn <- paste("./intermediate_files/table_data_word_", sel_ms, ".RDS", sep="")
df <- readRDS(fn)
df_dec <- readRDS("./intermediate_files/decisions_MS.RDS")
n_dec <- df_dec %>%filter(member_state_2_letter_code==sel_ms,
legal_basis!="Total")%>%
pull(n_decisions) %>% sum
n_am <- readRDS("./intermediate_files/number_amendments.RDS") %>%
filter( member_state_of_amendment ==sel_ms) %>%
pull(n_amendments)
df_mes <- readRDS("./intermediate_files/covid_measures_MS.RDS")
n_mes <- df_mes %>%
filter( member_state_2_letter_code==sel_ms,
legal_basis!="Total") %>%
pull(n_measures) %>%
sum
list_mes <- df_mes %>%
filter(n_measures!=0,
legal_basis!="Total",
member_state_2_letter_code==sel_ms
) %>%
arrange(desc(n_measures)) %>%
mutate(text=paste(n_measures, " under ", legal_basis, sep="")) %>%
pull(text) %>%
paste(collapse=", ")
budget_ini <- readRDS("./intermediate_files/budget_complete.RDS")
budget_sel <- budget_ini %>%
filter(member_state_2_letter_code==sel_ms)
## budget_ms <- budget_ini %>%
## filter(member_state_2_letter_code==sel_ms) %>%
## pull(budget) %>%
## divide_by(1e3)
budget_eu <- budget_ini %>%
filter(member_state_2_letter_code=="Total") %>%
pull(budget) %>%
divide_by(1e6) %>%
round(digits=2)
## ratio_budget_ms <- budget_ms %>%
## divide_by(budget_eu) %>%
## multiply_by(100) %>%
## round(digits=1)
## budget_eu <- budget_eu %>%
## divide_by(1e3) %>%
## round(digits=2)
## budget_ms <- budget_ms%>%
## round(digits=1)
budget_sector_ini <- readRDS("./intermediate_files/budget_sector_MS.RDS")
budget_sector <- budget_sector_ini %>%
filter(member_state_2_letter_code==sel_ms,
beneficary_sector!="Total") %>%
arrange(desc(budget)) %>%
mutate(budget=round(budget/1e3,1),
share=round(share*100,2)) %>%
find_text_replace("\\&", "and") %>%
find_text_replace("NPO", "non-profit organizations")
budget_type_ini <- readRDS("./intermediate_files/budget_type_MS.RDS")
budget_type <- budget_type_ini %>%
filter(member_state_2_letter_code==sel_ms,
beneficary_type!="Total") %>%
arrange(desc(budget)) %>%
mutate(budget=round(budget/1e3,1),
share=round(share*100,2)) %>%
find_text_replace("\\&", "and") %>%
find_text_replace("(?i)All sizes", "companies of any size") %>%
find_text_replace("(?i)SMEs and Large", "SMEs and large enterprises") %>%
find_text_replace("(?i)Micro and SME", "SMEs and micro enterprises") %>%
find_text_replace("(?i)Micro and small", "micro and small enterprises") %>%
find_text_replace("(?i)excl.", "excluding") %>%
find_text_replace("(?i)Medium.", "medium") %>%
find_text_replace("(?i)Ad", "ad")
duration_ini <- readRDS("./intermediate_files/duration_stat_MS.RDS")
duration <- duration_ini %>%
filter(member_state_2_letter_code==sel_ms) %>%
mutate(mean_duration=as.numeric(round(mean_duration,0)),
median_duration=as.numeric(round(median_duration,0)))
decisions_time_budget_ini <- readRDS("./intermediate_files/decisions_budget_time.RDS")
decisions_time <- decisions_time_budget_ini %>%
filter(member_state_2_letter_code==sel_ms)
decisions_n <- decisions_time %>%
arrange(desc(n_decisions))
decisions_budget <- decisions_time %>%
arrange(desc(budget))
```
* The Commission has so far taken `r n_dec` decisions (and `r n_am`
amendment decisions) approving `r n_mes` State aid measures for
`r country`, `r list_mes`.
* The total amount of Covid-19 aid approved for `r country` is
estimated around €`r budget_sel%>%pull(budget)%>%divide_by(1e3) %>% round(1)` billion, corresponding to `r budget_sel%>%pull(share)%>%multiply_by(100)%>%round(1)`%
of the total €`r budget_eu` trillion of total State aid approved for
the EU27 and to
`r budget_sel%>%pull(gdp)%>%multiply_by(100)%>%round(1)`% of the GDP of
`r country` in 2019.
* Around `r budget_sector$share[1]`% of the total budget of the State
aid measures approved for `r country` (€`r budget_sector$budget[1]`
billion) is directed to `r tolower(budget_sector$beneficary_sector[1])`
followed by about `r budget_sector$share[2]`% toward
`r tolower(budget_sector$beneficary_sector[2])` and about
`r budget_sector$share[3]`% is destined to
`r tolower(budget_sector$beneficary_sector[3])`.
* Around `r budget_type$share[1]`% of the total budget of the State
aid measures approved for `r country`
is directed to `r (budget_type$beneficary_type[1])`
and `r budget_type$share[2]`% toward
`r (budget_type$beneficary_type[2])`. Around
`r budget_type$share[3]`% is destined to
`r (budget_type$beneficary_type[3])`.
* The average case assessment duration is around
`r duration$mean_duration` calendar days (median:
`r duration$median_duration` days).
* The month when the highest number of decisions were approved was
`r decisions_n$date_easy[1]`
(`r (decisions_n$n_decisions[1])` decisions,
`r (decisions_n$share_dec[1])`% of the total approved decisions for `r country`) (see Figure below).
```{r, echo=FALSE,fig.height = 6, fig.width = 12}
ggplot(data = decisions_time,
aes(x = date, y = n_decisions)) +
## geom_point(size=2 , shape=1
## , stroke=2
## ) +
## geom_line(size=2)+
geom_col()+
my_ggplot_theme2("right")+
## facet_wrap(~ member_state_2_letter_code, nrow=7, scales = "free_y" )+
## coord_cartesian(ylim = c(0, 1)) +
scale_y_continuous() +
scale_x_date(breaks = "1 month",
date_labels = "%b\n%Y",
expand=c(0.01,0.01),
guide = guide_axis(n.dodge = 2))+
ylab("Number of approved decisions")+
xlab(NULL)
```
* The month when the highest allocated budget was approved was
`r decisions_budget$date_easy[1]`
(€`r (decisions_budget$budget[1]/1e3)` billion,
`r (decisions_budget$share_budget[1])`% of the total approved budget
for `r country`) (see Figure below).
```{r, echo=FALSE,fig.height = 6, fig.width = 12}
ggplot(data = decisions_time,
aes(x = date, y = budget/1e3)) +
## geom_point(size=2 , shape=1
## , stroke=2
## ) +
## geom_line(size=2)+
geom_col()+
my_ggplot_theme2("right")+
## facet_wrap(~ member_state_2_letter_code, nrow=7, scales = "free_y" )+
## coord_cartesian(ylim = c(0, 1)) +
scale_y_continuous() +
scale_x_date(breaks = "1 month",
date_labels = "%b\n%Y",
expand=c(0.01,0.01),
guide = guide_axis(n.dodge = 2))+
ylab("Approved budget (€ billion)")+
xlab(NULL)
```
* Below we list the State aid cases approved for `r country`.
```{r, table1, echo=FALSE, eval=TRUE}
df %>%
flextable() %>%
## add_header_row(values = c("some measures", "other measures") )%>%
set_header_labels(case_reference="Case Reference",
working_title="Working Title",
legal_basis="Legal Basis",
decision_date="Decision Date (YYYY-MM-DD)",
confirmed_budgets="Budgets (million €)",
type_of_measure="Type of Measure",
beneficary_sector="Beneficiary Sector",
beneficary_type="Beneficiary Type",
am_list="Amended by"
) %>%
theme_zebra() %>%
theme_box() %>%
fontsize(part = "all", size = 8) %>%
font(part="all", fontname = "Verdana") %>%
colformat_double(big.mark = " ") %>%
## autofit() ## %>%
width(width = c(.8,1,.8,.8,1,1,1,.8,1))
```