Révision | f957d0aae85b96c511b9429b51a0249b29e0667d (tree) |
---|---|
l'heure | 2008-08-06 05:08:59 |
Auteur | iselllo |
Commiter | iselllo |
I modified the code: now I simply give the number of directories as a
parameter and it goes through them and reads them as above.
But much cleaner code and easier to avoid mistakes.
I also introduced a new s.copy to properly copy an array.
@@ -14,10 +14,10 @@ | ||
14 | 14 | #p.rc('text', usetex=True) |
15 | 15 | |
16 | 16 | ini_conf=0 |
17 | -fin_conf=1500 #configurations I read initially in read_test.tcl | |
18 | - | |
19 | - | |
20 | -figure=1 #tells whether many pdf's should be produced or not. | |
17 | +fin_conf=3000 #configurations I read initially in read_test.tcl | |
18 | + | |
19 | + | |
20 | +figure=0 #tells whether many pdf's should be produced or not. | |
21 | 21 | |
22 | 22 | save_every=50 # in case figure == 1, it plots the results every save_every configurations |
23 | 23 |
@@ -45,9 +45,9 @@ | ||
45 | 45 | #my_config=19 #here labels the saved configurations but it is not directly the number |
46 | 46 | # of the file with the saved configuration |
47 | 47 | |
48 | -by=1 #I need it to select the elements from time.dat | |
49 | - | |
50 | -by_clusters=1 # this tells how often was the cluster number recorded | |
48 | +by=2 #I need it to select the elements from time.dat | |
49 | + | |
50 | +by_clusters=2 # this tells how often was the cluster number recorded | |
51 | 51 | |
52 | 52 | |
53 | 53 | min_cluster=5. # minimum amount of particles a cluster has to contain in order to be considered |
@@ -231,14 +231,16 @@ | ||
231 | 231 | |
232 | 232 | |
233 | 233 | |
234 | +n_dir=8. | |
235 | + | |
236 | + | |
237 | + | |
238 | +dir_list=s.arange(n_dir)+1 | |
239 | + | |
240 | + | |
241 | + | |
234 | 242 | |
235 | 243 | for my_config in xrange(ini_conf,fin_conf): |
236 | - print "my_config is, ", my_config | |
237 | - #cluster_long=s.zeros(1) | |
238 | - #r_gyr_long=s.zeros(1) | |
239 | - | |
240 | - | |
241 | - | |
242 | 244 | r_gyr_dist=s.zeros(1) # something to start concatenating the arrays |
243 | 245 | n_comp=s.zeros(1) #same for the clusters |
244 | 246 |
@@ -246,310 +248,75 @@ | ||
246 | 248 | |
247 | 249 | my_config=my_config*by |
248 | 250 | |
249 | - #cluster_name="cluster_dist%05d"%my_config | |
250 | - | |
251 | - temp_clu=p.load("../1/cluster_dist%05d"%my_config) | |
252 | - temp_r_gyr=p.load("../1/R_gyr_dist%05d"%my_config) | |
253 | - | |
254 | - | |
255 | - if (count_config==0): | |
256 | - | |
257 | - temp_clus=+p.load("../1/number_cluster.dat") #I load the number of clusters at each time | |
258 | - n_clus=n_clus+temp_clus | |
259 | - print "n_clus[0] is, ", n_clus[0] | |
260 | - | |
261 | - stack_clus=temp_clus | |
262 | - | |
263 | - | |
264 | - n_dir=n_dir+1 | |
265 | - | |
266 | - #n_clus=n_clus+temp_nc | |
267 | - | |
268 | - n_comp=s.concatenate([n_comp,temp_clu]) | |
269 | - r_gyr_dist=s.concatenate([r_gyr_dist,temp_r_gyr]) | |
270 | - | |
271 | - #cluster_long=s.concatenate([cluster_long,temp_clu]) | |
272 | - #r_gyr_long=s.concatenate([r_gyr_long,temp_r_gyr]) | |
273 | - cluster_tot=s.concatenate([cluster_tot,temp_clu]) | |
274 | - r_gyr_tot=s.concatenate([r_gyr_tot,temp_r_gyr]) | |
275 | - | |
276 | - | |
277 | - | |
278 | - temp_clu=p.load("../2/cluster_dist%05d"%my_config) | |
279 | - temp_r_gyr=p.load("../2/R_gyr_dist%05d"%my_config) | |
280 | - | |
281 | - n_dir=n_dir+1 | |
282 | - | |
283 | - | |
284 | - n_comp=s.concatenate([n_comp,temp_clu]) | |
285 | - r_gyr_dist=s.concatenate([r_gyr_dist,temp_r_gyr]) | |
286 | - | |
287 | - | |
288 | - #cluster_long=s.concatenate([cluster_long,temp_clu]) | |
289 | - #r_gyr_long=s.concatenate([r_gyr_long,temp_r_gyr]) | |
290 | - cluster_tot=s.concatenate([cluster_tot,temp_clu]) | |
291 | - r_gyr_tot=s.concatenate([r_gyr_tot,temp_r_gyr]) | |
292 | - | |
293 | - | |
294 | - | |
295 | - #temp_nc=p.load("../2/number_cluster.dat") #I load the number of clusters at each time | |
296 | - | |
297 | - #n_clus=n_clus+temp_nc | |
298 | - if (count_config==0): | |
299 | - temp_clus=+p.load("../2/number_cluster.dat") #I load the number of clusters at each time | |
300 | - n_clus=n_clus+temp_clus | |
301 | - stack_clus=s.vstack((stack_clus,temp_clus)) | |
302 | - print "n_clus[0] now is, ", n_clus[0] | |
303 | - | |
304 | - | |
305 | - | |
306 | - temp_clu=p.load("../3/cluster_dist%05d"%my_config) | |
307 | - temp_r_gyr=p.load("../3/R_gyr_dist%05d"%my_config) | |
308 | - | |
309 | - n_dir=n_dir+1 | |
310 | - | |
311 | - | |
312 | - n_comp=s.concatenate([n_comp,temp_clu]) | |
313 | - r_gyr_dist=s.concatenate([r_gyr_dist,temp_r_gyr]) | |
314 | - | |
315 | - | |
316 | - #cluster_long=s.concatenate([cluster_long,temp_clu]) | |
317 | - #r_gyr_long=s.concatenate([r_gyr_long,temp_r_gyr]) | |
318 | - cluster_tot=s.concatenate([cluster_tot,temp_clu]) | |
319 | - r_gyr_tot=s.concatenate([r_gyr_tot,temp_r_gyr]) | |
320 | - | |
321 | - | |
322 | - #temp_nc=p.load("../3/number_cluster.dat") #I load the number of clusters at each time | |
323 | - | |
324 | - #n_clus=n_clus+temp_nc | |
325 | - | |
326 | - if (count_config==0): | |
327 | - | |
328 | - temp_clus=+p.load("../3/number_cluster.dat") #I load the number of clusters at each time | |
329 | - n_clus=n_clus+temp_clus | |
330 | - | |
331 | - stack_clus=s.vstack((stack_clus,temp_clus)) | |
332 | - | |
333 | - | |
334 | - print "n_clus[0] now is, ", n_clus[0] | |
335 | - | |
336 | - | |
337 | - temp_clu=p.load("../4/cluster_dist%05d"%my_config) | |
338 | - temp_r_gyr=p.load("../4/R_gyr_dist%05d"%my_config) | |
339 | - | |
340 | - n_dir=n_dir+1 | |
341 | - | |
342 | - | |
343 | - n_comp=s.concatenate([n_comp,temp_clu]) | |
344 | - r_gyr_dist=s.concatenate([r_gyr_dist,temp_r_gyr]) | |
345 | - | |
346 | - #cluster_long=s.concatenate([cluster_long,temp_clu]) | |
347 | - #r_gyr_long=s.concatenate([r_gyr_long,temp_r_gyr]) | |
348 | - cluster_tot=s.concatenate([cluster_tot,temp_clu]) | |
349 | - r_gyr_tot=s.concatenate([r_gyr_tot,temp_r_gyr]) | |
350 | - | |
351 | - #temp_nc=p.load("../4/number_cluster.dat") #I load the number of clusters at each time | |
352 | - | |
353 | - #n_clus=n_clus+temp_nc | |
354 | - if (count_config==0): | |
355 | - | |
356 | - temp_clus=+p.load("../4/number_cluster.dat") #I load the number of clusters at each time | |
357 | - n_clus=n_clus+temp_clus | |
358 | - | |
359 | - stack_clus=s.vstack((stack_clus,temp_clus)) | |
360 | - | |
361 | - | |
362 | - | |
363 | - | |
364 | - | |
365 | - print "n_clus[0] now is, ", n_clus[0] | |
366 | - | |
367 | - | |
368 | - | |
369 | - temp_clu=p.load("../5/cluster_dist%05d"%my_config) | |
370 | - temp_r_gyr=p.load("../5/R_gyr_dist%05d"%my_config) | |
371 | - | |
372 | - n_dir=n_dir+1 | |
373 | - | |
374 | - | |
375 | - n_comp=s.concatenate([n_comp,temp_clu]) | |
376 | - r_gyr_dist=s.concatenate([r_gyr_dist,temp_r_gyr]) | |
377 | - | |
378 | - | |
379 | - #cluster_long=s.concatenate([cluster_long,temp_clu]) | |
380 | - #r_gyr_long=s.concatenate([r_gyr_long,temp_r_gyr]) | |
381 | - cluster_tot=s.concatenate([cluster_tot,temp_clu]) | |
382 | - r_gyr_tot=s.concatenate([r_gyr_tot,temp_r_gyr]) | |
383 | - | |
384 | - | |
385 | - #temp_nc=p.load("../5/number_cluster.dat") #I load the number of clusters at each time | |
386 | - | |
387 | - #n_clus=n_clus+temp_nc | |
388 | - if (count_config==0): | |
389 | - | |
390 | - temp_clus=+p.load("../5/number_cluster.dat") #I load the number of clusters at each time | |
391 | - n_clus=n_clus+temp_clus | |
251 | + | |
252 | + for m in xrange(len(dir_list)): | |
253 | + | |
254 | + dir_name="../%01d"%(dir_list[m]) | |
255 | + | |
256 | + print "my_config is, ", my_config | |
257 | + #cluster_long=s.zeros(1) | |
258 | + #r_gyr_long=s.zeros(1) | |
259 | + | |
260 | + temp_clu_name=dir_name+"/cluster_dist%05d"%my_config | |
261 | + temp_r_gyr_name=dir_name+"/R_gyr_dist%05d"%my_config | |
262 | + | |
263 | + | |
264 | + #cluster_name="cluster_dist%05d"%my_config | |
265 | + | |
266 | + temp_clu=p.load(temp_clu_name) | |
267 | + temp_r_gyr=p.load(temp_r_gyr_name) | |
268 | + | |
269 | + | |
270 | + if (count_config==0): | |
271 | + | |
272 | + temp_clus_name=dir_name+"/number_cluster.dat" | |
273 | + temp_clus=p.load(temp_clus_name) | |
274 | + | |
275 | +# temp_clus=+p.load("../1/number_cluster.dat") #I load the number of clusters at each time (but I load it only once!) | |
276 | + n_clus=n_clus+temp_clus | |
277 | + print "n_clus[0] is, ", n_clus[0] | |
278 | + | |
279 | + stack_clus=temp_clus | |
280 | + | |
281 | + | |
282 | +# n_dir=n_dir+1 | |
283 | + | |
284 | + #n_clus=n_clus+temp_nc | |
285 | + | |
286 | + n_comp=s.concatenate([n_comp,temp_clu]) | |
287 | + r_gyr_dist=s.concatenate([r_gyr_dist,temp_r_gyr]) | |
392 | 288 | |
393 | 289 | stack_clus=s.vstack((stack_clus,temp_clus)) |
394 | 290 | |
395 | 291 | |
396 | - | |
397 | - | |
398 | - temp_clu=p.load("../6/cluster_dist%05d"%my_config) | |
399 | - temp_r_gyr=p.load("../6/R_gyr_dist%05d"%my_config) | |
400 | - | |
401 | - n_dir=n_dir+1 | |
402 | - | |
403 | - | |
404 | - n_comp=s.concatenate([n_comp,temp_clu]) | |
405 | - r_gyr_dist=s.concatenate([r_gyr_dist,temp_r_gyr]) | |
406 | - | |
407 | - | |
408 | - #cluster_long=s.concatenate([cluster_long,temp_clu]) | |
409 | - #r_gyr_long=s.concatenate([r_gyr_long,temp_r_gyr]) | |
410 | - cluster_tot=s.concatenate([cluster_tot,temp_clu]) | |
411 | - r_gyr_tot=s.concatenate([r_gyr_tot,temp_r_gyr]) | |
412 | - | |
413 | - | |
414 | - | |
415 | - #temp_nc=p.load("../6/number_cluster.dat") #I load the number of clusters at each time | |
416 | - | |
417 | - #n_clus=n_clus+temp_nc | |
418 | - if (count_config==0): | |
419 | - | |
420 | - temp_clus=+p.load("../6/number_cluster.dat") #I load the number of clusters at each time | |
421 | - n_clus=n_clus+temp_clus | |
422 | - | |
423 | - stack_clus=s.vstack((stack_clus,temp_clus)) | |
424 | - | |
425 | - | |
426 | - | |
427 | - | |
428 | - | |
429 | - temp_clu=p.load("../7/cluster_dist%05d"%my_config) | |
430 | - temp_r_gyr=p.load("../7/R_gyr_dist%05d"%my_config) | |
431 | - | |
432 | - n_dir=n_dir+1 | |
433 | - | |
434 | - | |
435 | - n_comp=s.concatenate([n_comp,temp_clu]) | |
436 | - r_gyr_dist=s.concatenate([r_gyr_dist,temp_r_gyr]) | |
437 | - | |
438 | - | |
439 | - #cluster_long=s.concatenate([cluster_long,temp_clu]) | |
440 | - #r_gyr_long=s.concatenate([r_gyr_long,temp_r_gyr]) | |
441 | - cluster_tot=s.concatenate([cluster_tot,temp_clu]) | |
442 | - r_gyr_tot=s.concatenate([r_gyr_tot,temp_r_gyr]) | |
443 | - | |
444 | - | |
445 | - #temp_nc=p.load("../7/number_cluster.dat") #I load the number of clusters at each time | |
446 | - | |
447 | - #n_clus=n_clus+temp_nc | |
448 | - if (count_config==0): | |
449 | - | |
450 | - temp_clus=+p.load("../7/number_cluster.dat") #I load the number of clusters at each time | |
451 | - n_clus=n_clus+temp_clus | |
452 | - | |
453 | - stack_clus=s.vstack((stack_clus,temp_clus)) | |
454 | - | |
455 | - | |
456 | - | |
457 | - | |
458 | - temp_clu=p.load("../8/cluster_dist%05d"%my_config) | |
459 | - temp_r_gyr=p.load("../8/R_gyr_dist%05d"%my_config) | |
460 | - | |
461 | - n_dir=n_dir+1 | |
462 | - | |
463 | - | |
464 | - n_comp=s.concatenate([n_comp,temp_clu]) | |
465 | - r_gyr_dist=s.concatenate([r_gyr_dist,temp_r_gyr]) | |
466 | - | |
467 | - | |
468 | - #cluster_long=s.concatenate([cluster_long,temp_clu]) | |
469 | - #r_gyr_long=s.concatenate([r_gyr_long,temp_r_gyr]) | |
470 | - cluster_tot=s.concatenate([cluster_tot,temp_clu]) | |
471 | - r_gyr_tot=s.concatenate([r_gyr_tot,temp_r_gyr]) | |
472 | - | |
473 | - | |
474 | - #temp_nc=p.load("../8/number_cluster.dat") #I load the number of clusters at each time | |
475 | - | |
476 | - #n_clus=n_clus+temp_nc | |
477 | - if (count_config==0): | |
478 | - | |
479 | - temp_clus=+p.load("../8/number_cluster.dat") #I load the number of clusters at each time | |
480 | - n_clus=n_clus+temp_clus | |
481 | - | |
482 | - stack_clus=s.vstack((stack_clus,temp_clus)) | |
483 | - | |
484 | - | |
485 | - | |
486 | - | |
487 | - temp_clu=p.load("../9/cluster_dist%05d"%my_config) | |
488 | - temp_r_gyr=p.load("../9/R_gyr_dist%05d"%my_config) | |
489 | - | |
490 | - | |
491 | - n_comp=s.concatenate([n_comp,temp_clu]) | |
492 | - r_gyr_dist=s.concatenate([r_gyr_dist,temp_r_gyr]) | |
493 | - | |
494 | - | |
495 | - #cluster_long=s.concatenate([cluster_long,temp_clu]) | |
496 | - #r_gyr_long=s.concatenate([r_gyr_long,temp_r_gyr]) | |
497 | - cluster_tot=s.concatenate([cluster_tot,temp_clu]) | |
498 | - r_gyr_tot=s.concatenate([r_gyr_tot,temp_r_gyr]) | |
499 | - | |
500 | - | |
501 | - #temp_nc=p.load("../9/number_cluster.dat") #I load the number of clusters at each time | |
502 | - | |
503 | - #n_clus=n_clus+temp_nc | |
504 | - | |
505 | - if (count_config==0): | |
506 | - | |
507 | - temp_clus=+p.load("../9/number_cluster.dat") #I load the number of clusters at each time | |
508 | - n_clus=n_clus+temp_clus | |
509 | - | |
510 | - stack_clus=s.vstack((stack_clus,temp_clus)) | |
511 | - | |
512 | - | |
513 | - | |
514 | - n_dir=n_dir+1 | |
515 | - | |
516 | - | |
517 | - temp_clu=p.load("../10/cluster_dist%05d"%my_config) | |
518 | - temp_r_gyr=p.load("../10/R_gyr_dist%05d"%my_config) | |
519 | - | |
520 | - | |
521 | - n_comp=s.concatenate([n_comp,temp_clu]) | |
522 | - r_gyr_dist=s.concatenate([r_gyr_dist,temp_r_gyr]) | |
523 | - | |
524 | - n_dir=n_dir+1 | |
525 | - | |
526 | - n_dir_count=n_dir | |
527 | - | |
528 | - n_dir=0 | |
529 | - | |
530 | - #cluster_long=s.concatenate([cluster_long,temp_clu]) | |
531 | - #r_gyr_long=s.concatenate([r_gyr_long,temp_r_gyr]) | |
532 | - cluster_tot=s.concatenate([cluster_tot,temp_clu]) | |
533 | - r_gyr_tot=s.concatenate([r_gyr_tot,temp_r_gyr]) | |
534 | - | |
535 | - | |
536 | - | |
537 | - #temp_nc=p.load("../10/number_cluster.dat") #I load the number of clusters at each time | |
538 | - | |
539 | - #n_clus=n_clus+temp_nc | |
540 | - | |
541 | - if (count_config==0): | |
542 | - | |
543 | - temp_clus=+p.load("../10/number_cluster.dat") #I load the number of clusters at each time | |
544 | - n_clus=n_clus+temp_clus | |
545 | - | |
546 | - stack_clus=s.vstack((stack_clus,temp_clus)) | |
292 | + #cluster_long=s.concatenate([cluster_long,temp_clu]) | |
293 | + #r_gyr_long=s.concatenate([r_gyr_long,temp_r_gyr]) | |
294 | + cluster_tot=s.concatenate([cluster_tot,temp_clu]) | |
295 | + r_gyr_tot=s.concatenate([r_gyr_tot,temp_r_gyr]) | |
296 | + | |
297 | + | |
298 | +# #cluster_long=s.concatenate([cluster_long,temp_clu]) | |
299 | +# #r_gyr_long=s.concatenate([r_gyr_long,temp_r_gyr]) | |
300 | +# cluster_tot=s.concatenate([cluster_tot,temp_clu]) | |
301 | +# r_gyr_tot=s.concatenate([r_gyr_tot,temp_r_gyr]) | |
302 | + | |
303 | + | |
304 | + | |
305 | +# #temp_nc=p.load("../10/number_cluster.dat") #I load the number of clusters at each time | |
306 | + | |
307 | +# #n_clus=n_clus+temp_nc | |
308 | + | |
309 | +# if (count_config==0): | |
310 | + | |
311 | +# temp_clus=+p.load("../10/number_cluster.dat") #I load the number of clusters at each time | |
312 | +# n_clus=n_clus+temp_clus | |
313 | + | |
547 | 314 | |
548 | 315 | |
549 | 316 | |
550 | 317 | |
551 | 318 | |
552 | - n_comp_mon=n_comp | |
319 | + n_comp_mon=s.copy(n_comp) | |
553 | 320 | |
554 | 321 | n_comp_mon=n_comp_mon[s.where(n_comp_mon>0.)] #I need this line since n_comp_mon comes from n_comp |
555 | 322 | #which in turn is defined first as [0] (array with an only entry equal to zero) |
@@ -906,7 +673,7 @@ | ||
906 | 673 | |
907 | 674 | #d=s.concatenate((a,b)).reshape(2,4).transpose() |
908 | 675 | N_k_vs_k=s.zeros((len(n_comp_mon_uni),2)) |
909 | - N_k_arr=N_k_arr/(n_dir_count*1.) | |
676 | + N_k_arr=N_k_arr/(n_dir*1.) | |
910 | 677 | #print "n_dir is, ", n_dir |
911 | 678 | N_k_vs_k[:,0]=N_k_arr |
912 | 679 | N_k_vs_k[:,1]=n_comp_mon_uni*1. #n_comp_mon_uni is the k array |
@@ -1066,15 +833,15 @@ | ||
1066 | 833 | |
1067 | 834 | #print "now n_dir is, ", n_dir |
1068 | 835 | |
1069 | -n_clus=n_clus/(n_dir_count) | |
1070 | - | |
1071 | -n_clus_small=n_clus_small/(n_dir_count) | |
1072 | -n_clus_large=n_clus_large/(n_dir_count) | |
1073 | -n_clus_test=n_clus_test/(n_dir_count) | |
836 | +n_clus=n_clus/(n_dir) | |
837 | + | |
838 | +n_clus_small=n_clus_small/(n_dir) | |
839 | +n_clus_large=n_clus_large/(n_dir) | |
840 | +n_clus_test=n_clus_test/(n_dir) | |
1074 | 841 | |
1075 | 842 | mean_clus_separation=(n_clus/box_vol)**(-1./3) |
1076 | 843 | |
1077 | -print "n_dir_count is, ", n_dir_count | |
844 | +print "n_dir is, ", n_dir | |
1078 | 845 | |
1079 | 846 | #print "the total volume is, ", k_aver*n_clus |
1080 | 847 |
@@ -1250,42 +1017,42 @@ | ||
1250 | 1017 | |
1251 | 1018 | |
1252 | 1019 | |
1253 | -fig = p.figure() | |
1254 | -axes = fig.gca() | |
1255 | - | |
1256 | - | |
1257 | -axes.errorbar(time,my_fractal_dim,yerr=delta_df ) | |
1258 | -p.ylim(1.4,3.) | |
1259 | -p.xlabel('Time') | |
1260 | -p.ylabel('Fractal dimension') | |
1261 | -#p.legend(('from power-law fitting','from linear fitting on log-log')) | |
1262 | -#p.title('Evolution Fractal Dimension from R_g') | |
1263 | -#p.grid(True) | |
1264 | - #cluster_name="number_cluster_vs_time2%05d"%my_config | |
1265 | -#cluster_name="std_err_D_f.pdf" | |
1266 | -p.savefig("time_evolution_D_f_with_error_bars.pdf") | |
1020 | +# fig = p.figure() | |
1021 | +# axes = fig.gca() | |
1022 | + | |
1023 | + | |
1024 | +# axes.errorbar(time,my_fractal_dim,yerr=delta_df ) | |
1025 | +# p.ylim(1.4,3.) | |
1026 | +# p.xlabel('Time') | |
1027 | +# p.ylabel('Fractal dimension') | |
1028 | +# #p.legend(('from power-law fitting','from linear fitting on log-log')) | |
1029 | +# #p.title('Evolution Fractal Dimension from R_g') | |
1030 | +# #p.grid(True) | |
1031 | +# #cluster_name="number_cluster_vs_time2%05d"%my_config | |
1032 | +# #cluster_name="std_err_D_f.pdf" | |
1033 | +# p.savefig("time_evolution_D_f_with_error_bars.pdf") | |
1267 | 1034 | |
1268 | -p.clf() | |
1269 | - | |
1270 | - | |
1271 | - | |
1272 | - | |
1273 | -fig = p.figure() | |
1274 | -axes = fig.gca() | |
1275 | - | |
1276 | - | |
1277 | -axes.errorbar(time,my_fractal_dim,yerr=delta_df ) | |
1278 | -p.ylim(1.4,3.) | |
1279 | -p.xlabel('Time') | |
1280 | -p.ylabel('Fractal dimension') | |
1281 | -#p.legend(('from power-law fitting','from linear fitting on log-log')) | |
1282 | -#p.title('Evolution Fractal Dimension from R_g') | |
1283 | -#p.grid(True) | |
1284 | - #cluster_name="number_cluster_vs_time2%05d"%my_config | |
1285 | -#cluster_name="std_err_D_f.pdf" | |
1286 | -p.savefig("time_evolution_D_f_with_error_bars_large_cluster.pdf") | |
1035 | +# p.clf() | |
1036 | + | |
1037 | + | |
1038 | + | |
1039 | + | |
1040 | +# fig = p.figure() | |
1041 | +# axes = fig.gca() | |
1042 | + | |
1043 | + | |
1044 | +# axes.errorbar(time,my_fractal_dim,yerr=delta_df ) | |
1045 | +# p.ylim(1.4,3.) | |
1046 | +# p.xlabel('Time') | |
1047 | +# p.ylabel('Fractal dimension') | |
1048 | +# #p.legend(('from power-law fitting','from linear fitting on log-log')) | |
1049 | +# #p.title('Evolution Fractal Dimension from R_g') | |
1050 | +# #p.grid(True) | |
1051 | +# #cluster_name="number_cluster_vs_time2%05d"%my_config | |
1052 | +# #cluster_name="std_err_D_f.pdf" | |
1053 | +# p.savefig("time_evolution_D_f_with_error_bars_large_cluster.pdf") | |
1287 | 1054 | |
1288 | -p.clf() | |
1055 | +# p.clf() | |
1289 | 1056 | |
1290 | 1057 | |
1291 | 1058 |
@@ -1306,6 +1073,12 @@ | ||
1306 | 1073 | |
1307 | 1074 | my_tau_coll=1./(n_clus_test/box_vol*mean_velocity*s.pi*R_gyr_mean**2.) |
1308 | 1075 | |
1076 | +print "R_gyr_mean is, ", R_gyr_mean | |
1077 | + | |
1078 | +print "mean_velocity is, ", mean_velocity | |
1079 | + | |
1080 | +print "n_clus_test is, ", n_clus_test | |
1081 | + | |
1309 | 1082 | p.save("collision_time.dat", my_tau_coll) |
1310 | 1083 | |
1311 | 1084 |
@@ -1313,140 +1086,140 @@ | ||
1313 | 1086 | |
1314 | 1087 | |
1315 | 1088 | |
1316 | -fig = p.figure() | |
1317 | -axes = fig.gca() | |
1318 | - | |
1319 | -#axes.plot(s.log10(n_comp_large),s.log10(r_gyr_ari_large), "bo") | |
1320 | -axes.plot(time,my_tau_coll, "bo",label="collision_time") | |
1321 | -# axes.loglog(time_clu,n_clus_small, "k+",label="$N_<$") | |
1322 | -# axes.loglog(time_clu,n_clus_large, "rx",label="$N_>$") | |
1323 | -# axes.loglog(time_clu[choice_time_clu],(10.**my_conc),"k",\ | |
1324 | -# label=r"Fit of $N_\infty $",linewidth=2.) | |
1325 | -p.xlabel('Time') | |
1326 | -p.ylabel('collision time') | |
1327 | -p.title("Evolution collision tim") | |
1328 | -p.grid(True) | |
1329 | -cluster_name="collision_time.pdf" | |
1330 | -axes.legend() | |
1331 | -p.savefig(cluster_name) | |
1332 | - | |
1333 | -p.clf() | |
1334 | - | |
1335 | - | |
1336 | - | |
1337 | - | |
1338 | -fig = p.figure() | |
1339 | -axes = fig.gca() | |
1340 | - | |
1341 | -#axes.plot(s.log10(n_comp_large),s.log10(r_gyr_ari_large), "bo") | |
1342 | -axes.loglog(time,my_tau_coll, "bo",label="collision_time") | |
1343 | -# axes.loglog(time_clu,n_clus_small, "k+",label="$N_<$") | |
1344 | -# axes.loglog(time_clu,n_clus_large, "rx",label="$N_>$") | |
1345 | -# axes.loglog(time_clu[choice_time_clu],(10.**my_conc),"k",\ | |
1346 | -# label=r"Fit of $N_\infty $",linewidth=2.) | |
1347 | -p.xlabel('Time') | |
1348 | -p.ylabel('collision time') | |
1349 | -p.title("Evolution collision tim") | |
1350 | -p.grid(True) | |
1351 | -cluster_name="collision_time_log_log.pdf" | |
1352 | -axes.legend() | |
1353 | -p.savefig(cluster_name) | |
1089 | +# fig = p.figure() | |
1090 | +# axes = fig.gca() | |
1091 | + | |
1092 | +# #axes.plot(s.log10(n_comp_large),s.log10(r_gyr_ari_large), "bo") | |
1093 | +# axes.plot(time,my_tau_coll, "bo",label="collision_time") | |
1094 | +# # axes.loglog(time_clu,n_clus_small, "k+",label="$N_<$") | |
1095 | +# # axes.loglog(time_clu,n_clus_large, "rx",label="$N_>$") | |
1096 | +# # axes.loglog(time_clu[choice_time_clu],(10.**my_conc),"k",\ | |
1097 | +# # label=r"Fit of $N_\infty $",linewidth=2.) | |
1098 | +# p.xlabel('Time') | |
1099 | +# p.ylabel('collision time') | |
1100 | +# p.title("Evolution collision tim") | |
1101 | +# p.grid(True) | |
1102 | +# cluster_name="collision_time.pdf" | |
1103 | +# axes.legend() | |
1104 | +# p.savefig(cluster_name) | |
1354 | 1105 | |
1355 | -p.clf() | |
1356 | - | |
1357 | - | |
1358 | - | |
1359 | - | |
1360 | - | |
1361 | - | |
1362 | - | |
1363 | - | |
1364 | - | |
1365 | - | |
1366 | -fig = p.figure() | |
1367 | -axes = fig.gca() | |
1368 | - | |
1369 | -#axes.plot(s.log10(n_comp_large),s.log10(r_gyr_ari_large), "bo") | |
1370 | -axes.plot(time,mean_free_path, "bo",label="Mean-free path") | |
1371 | -# axes.loglog(time_clu,n_clus_small, "k+",label="$N_<$") | |
1372 | -# axes.loglog(time_clu,n_clus_large, "rx",label="$N_>$") | |
1373 | -# axes.loglog(time_clu[choice_time_clu],(10.**my_conc),"k",\ | |
1374 | -# label=r"Fit of $N_\infty $",linewidth=2.) | |
1375 | -p.xlabel('Time') | |
1376 | -p.ylabel('Particle mean free path') | |
1377 | -p.title("Evolution Mean-free path") | |
1378 | -p.grid(True) | |
1379 | -cluster_name="mean_free_path.pdf" | |
1380 | -axes.legend() | |
1381 | -p.savefig(cluster_name) | |
1106 | +# p.clf() | |
1107 | + | |
1108 | + | |
1109 | + | |
1110 | + | |
1111 | +# fig = p.figure() | |
1112 | +# axes = fig.gca() | |
1113 | + | |
1114 | +# #axes.plot(s.log10(n_comp_large),s.log10(r_gyr_ari_large), "bo") | |
1115 | +# axes.loglog(time,my_tau_coll, "bo",label="collision_time") | |
1116 | +# # axes.loglog(time_clu,n_clus_small, "k+",label="$N_<$") | |
1117 | +# # axes.loglog(time_clu,n_clus_large, "rx",label="$N_>$") | |
1118 | +# # axes.loglog(time_clu[choice_time_clu],(10.**my_conc),"k",\ | |
1119 | +# # label=r"Fit of $N_\infty $",linewidth=2.) | |
1120 | +# p.xlabel('Time') | |
1121 | +# p.ylabel('collision time') | |
1122 | +# p.title("Evolution collision tim") | |
1123 | +# p.grid(True) | |
1124 | +# cluster_name="collision_time_log_log.pdf" | |
1125 | +# axes.legend() | |
1126 | +# p.savefig(cluster_name) | |
1382 | 1127 | |
1383 | -p.clf() | |
1384 | - | |
1385 | - | |
1386 | - | |
1387 | - | |
1388 | - | |
1389 | -fig = p.figure() | |
1390 | -axes = fig.gca() | |
1391 | - | |
1392 | -#axes.plot(s.log10(n_comp_large),s.log10(r_gyr_ari_large), "bo") | |
1393 | -axes.loglog(time,mean_free_path, "bo",label="Mean-free path") | |
1394 | -# axes.loglog(time_clu,n_clus_small, "k+",label="$N_<$") | |
1395 | -# axes.loglog(time_clu,n_clus_large, "rx",label="$N_>$") | |
1396 | -# axes.loglog(time_clu[choice_time_clu],(10.**my_conc),"k",\ | |
1397 | -# label=r"Fit of $N_\infty $",linewidth=2.) | |
1398 | -p.xlabel('Time') | |
1399 | -p.ylabel('Particle mean free path') | |
1400 | -p.title("Evolution Mean-free path") | |
1401 | -p.grid(True) | |
1402 | -cluster_name="mean_free_path_loglog.pdf" | |
1403 | -axes.legend() | |
1404 | -p.savefig(cluster_name) | |
1128 | +# p.clf() | |
1129 | + | |
1130 | + | |
1131 | + | |
1132 | + | |
1133 | + | |
1134 | + | |
1135 | + | |
1136 | + | |
1137 | + | |
1138 | + | |
1139 | +# fig = p.figure() | |
1140 | +# axes = fig.gca() | |
1141 | + | |
1142 | +# #axes.plot(s.log10(n_comp_large),s.log10(r_gyr_ari_large), "bo") | |
1143 | +# axes.plot(time,mean_free_path, "bo",label="Mean-free path") | |
1144 | +# # axes.loglog(time_clu,n_clus_small, "k+",label="$N_<$") | |
1145 | +# # axes.loglog(time_clu,n_clus_large, "rx",label="$N_>$") | |
1146 | +# # axes.loglog(time_clu[choice_time_clu],(10.**my_conc),"k",\ | |
1147 | +# # label=r"Fit of $N_\infty $",linewidth=2.) | |
1148 | +# p.xlabel('Time') | |
1149 | +# p.ylabel('Particle mean free path') | |
1150 | +# p.title("Evolution Mean-free path") | |
1151 | +# p.grid(True) | |
1152 | +# cluster_name="mean_free_path.pdf" | |
1153 | +# axes.legend() | |
1154 | +# p.savefig(cluster_name) | |
1405 | 1155 | |
1406 | -p.clf() | |
1407 | - | |
1408 | - | |
1409 | - | |
1410 | - | |
1411 | - | |
1412 | -fig = p.figure() | |
1413 | -axes = fig.gca() | |
1414 | - | |
1415 | -#axes.plot(s.log10(n_comp_large),s.log10(r_gyr_ari_large), "bo") | |
1416 | -axes.plot(time,R_gyr_mean, "bo",label="Mean radius of gyration") | |
1417 | -# axes.loglog(time_clu,n_clus_small, "k+",label="$N_<$") | |
1418 | -# axes.loglog(time_clu,n_clus_large, "rx",label="$N_>$") | |
1419 | -# axes.loglog(time_clu[choice_time_clu],(10.**my_conc),"k",\ | |
1420 | -# label=r"Fit of $N_\infty $",linewidth=2.) | |
1421 | -p.xlabel('Time') | |
1422 | -p.ylabel('Mean radius of gyration') | |
1423 | -p.title("Evolution Mean Radius of gyration") | |
1424 | -p.grid(True) | |
1425 | -cluster_name="mean_radius_gyration.pdf" | |
1426 | -axes.legend() | |
1427 | -p.savefig(cluster_name) | |
1156 | +# p.clf() | |
1157 | + | |
1158 | + | |
1159 | + | |
1160 | + | |
1161 | + | |
1162 | +# fig = p.figure() | |
1163 | +# axes = fig.gca() | |
1164 | + | |
1165 | +# #axes.plot(s.log10(n_comp_large),s.log10(r_gyr_ari_large), "bo") | |
1166 | +# axes.loglog(time,mean_free_path, "bo",label="Mean-free path") | |
1167 | +# # axes.loglog(time_clu,n_clus_small, "k+",label="$N_<$") | |
1168 | +# # axes.loglog(time_clu,n_clus_large, "rx",label="$N_>$") | |
1169 | +# # axes.loglog(time_clu[choice_time_clu],(10.**my_conc),"k",\ | |
1170 | +# # label=r"Fit of $N_\infty $",linewidth=2.) | |
1171 | +# p.xlabel('Time') | |
1172 | +# p.ylabel('Particle mean free path') | |
1173 | +# p.title("Evolution Mean-free path") | |
1174 | +# p.grid(True) | |
1175 | +# cluster_name="mean_free_path_loglog.pdf" | |
1176 | +# axes.legend() | |
1177 | +# p.savefig(cluster_name) | |
1428 | 1178 | |
1429 | -p.clf() | |
1430 | - | |
1431 | - | |
1432 | -fig = p.figure() | |
1433 | -axes = fig.gca() | |
1434 | - | |
1435 | -#axes.plot(s.log10(n_comp_large),s.log10(r_gyr_ari_large), "bo") | |
1436 | -axes.loglog(time,R_gyr_mean, "bo",label="Mean radius of gyration") | |
1437 | -# axes.loglog(time_clu,n_clus_small, "k+",label="$N_<$") | |
1438 | -# axes.loglog(time_clu,n_clus_large, "rx",label="$N_>$") | |
1439 | -# axes.loglog(time_clu[choice_time_clu],(10.**my_conc),"k",\ | |
1440 | -# label=r"Fit of $N_\infty $",linewidth=2.) | |
1441 | -p.xlabel('Time') | |
1442 | -p.ylabel('Mean radius of gyration') | |
1443 | -p.title("Evolution Mean Radius of gyration") | |
1444 | -p.grid(True) | |
1445 | -cluster_name="mean_radius_gyration_loglog.pdf" | |
1446 | -axes.legend() | |
1447 | -p.savefig(cluster_name) | |
1179 | +# p.clf() | |
1180 | + | |
1181 | + | |
1182 | + | |
1183 | + | |
1184 | + | |
1185 | +# fig = p.figure() | |
1186 | +# axes = fig.gca() | |
1187 | + | |
1188 | +# #axes.plot(s.log10(n_comp_large),s.log10(r_gyr_ari_large), "bo") | |
1189 | +# axes.plot(time,R_gyr_mean, "bo",label="Mean radius of gyration") | |
1190 | +# # axes.loglog(time_clu,n_clus_small, "k+",label="$N_<$") | |
1191 | +# # axes.loglog(time_clu,n_clus_large, "rx",label="$N_>$") | |
1192 | +# # axes.loglog(time_clu[choice_time_clu],(10.**my_conc),"k",\ | |
1193 | +# # label=r"Fit of $N_\infty $",linewidth=2.) | |
1194 | +# p.xlabel('Time') | |
1195 | +# p.ylabel('Mean radius of gyration') | |
1196 | +# p.title("Evolution Mean Radius of gyration") | |
1197 | +# p.grid(True) | |
1198 | +# cluster_name="mean_radius_gyration.pdf" | |
1199 | +# axes.legend() | |
1200 | +# p.savefig(cluster_name) | |
1448 | 1201 | |
1449 | -p.clf() | |
1202 | +# p.clf() | |
1203 | + | |
1204 | + | |
1205 | +# fig = p.figure() | |
1206 | +# axes = fig.gca() | |
1207 | + | |
1208 | +# #axes.plot(s.log10(n_comp_large),s.log10(r_gyr_ari_large), "bo") | |
1209 | +# axes.loglog(time,R_gyr_mean, "bo",label="Mean radius of gyration") | |
1210 | +# # axes.loglog(time_clu,n_clus_small, "k+",label="$N_<$") | |
1211 | +# # axes.loglog(time_clu,n_clus_large, "rx",label="$N_>$") | |
1212 | +# # axes.loglog(time_clu[choice_time_clu],(10.**my_conc),"k",\ | |
1213 | +# # label=r"Fit of $N_\infty $",linewidth=2.) | |
1214 | +# p.xlabel('Time') | |
1215 | +# p.ylabel('Mean radius of gyration') | |
1216 | +# p.title("Evolution Mean Radius of gyration") | |
1217 | +# p.grid(True) | |
1218 | +# cluster_name="mean_radius_gyration_loglog.pdf" | |
1219 | +# axes.legend() | |
1220 | +# p.savefig(cluster_name) | |
1221 | + | |
1222 | +# p.clf() | |
1450 | 1223 | |
1451 | 1224 | |
1452 | 1225 | #Now a fit of the behaviour of the mean radius of gyration vs time |
@@ -1464,26 +1237,26 @@ | ||
1464 | 1237 | |
1465 | 1238 | p.save("mean_radius_gyration.dat",R_gyr_mean) |
1466 | 1239 | |
1467 | -fig = p.figure() | |
1468 | -axes = fig.gca() | |
1469 | - | |
1470 | -#axes.plot(s.log10(n_comp_large),s.log10(r_gyr_ari_large), "bo") | |
1471 | -axes.loglog(time,R_gyr_mean, "bo",label="Mean radius of gyration") | |
1472 | -axes.loglog(time[choice_time_R],10.**(R_gyr_mean_fit), "r", linewidth=2.,label="Mean radius of gyration (fit)") | |
1473 | - | |
1474 | -# axes.loglog(time_clu,n_clus_small, "k+",label="$N_<$") | |
1475 | -# axes.loglog(time_clu,n_clus_large, "rx",label="$N_>$") | |
1476 | -# axes.loglog(time_clu[choice_time_clu],(10.**my_conc),"k",\ | |
1477 | -# label=r"Fit of $N_\infty $",linewidth=2.) | |
1478 | -p.xlabel('Time') | |
1479 | -p.ylabel('Mean radius of gyration') | |
1480 | -p.title("Evolution Mean Radius of gyration") | |
1481 | -p.grid(True) | |
1482 | -cluster_name="mean_radius_gyration_loglog_fitting.pdf" | |
1483 | -axes.legend() | |
1484 | -p.savefig(cluster_name) | |
1240 | +# fig = p.figure() | |
1241 | +# axes = fig.gca() | |
1242 | + | |
1243 | +# #axes.plot(s.log10(n_comp_large),s.log10(r_gyr_ari_large), "bo") | |
1244 | +# axes.loglog(time,R_gyr_mean, "bo",label="Mean radius of gyration") | |
1245 | +# axes.loglog(time[choice_time_R],10.**(R_gyr_mean_fit), "r", linewidth=2.,label="Mean radius of gyration (fit)") | |
1246 | + | |
1247 | +# # axes.loglog(time_clu,n_clus_small, "k+",label="$N_<$") | |
1248 | +# # axes.loglog(time_clu,n_clus_large, "rx",label="$N_>$") | |
1249 | +# # axes.loglog(time_clu[choice_time_clu],(10.**my_conc),"k",\ | |
1250 | +# # label=r"Fit of $N_\infty $",linewidth=2.) | |
1251 | +# p.xlabel('Time') | |
1252 | +# p.ylabel('Mean radius of gyration') | |
1253 | +# p.title("Evolution Mean Radius of gyration") | |
1254 | +# p.grid(True) | |
1255 | +# cluster_name="mean_radius_gyration_loglog_fitting.pdf" | |
1256 | +# axes.legend() | |
1257 | +# p.savefig(cluster_name) | |
1485 | 1258 | |
1486 | -p.clf() | |
1259 | +# p.clf() | |
1487 | 1260 | |
1488 | 1261 | |
1489 | 1262 |
@@ -1796,25 +1569,25 @@ | ||
1796 | 1569 | |
1797 | 1570 | |
1798 | 1571 | |
1799 | -fig = p.figure() | |
1800 | -axes = fig.gca() | |
1801 | - | |
1802 | -axes.plot(time,prefactor_R,"k^",time,prefactor_small_R,"ro"\ | |
1803 | - ,time,prefactor_large_R,"bx") | |
1804 | -p.xlabel('Dimensionless Time',fontsize=20) | |
1805 | -labels = p.getp(p.gca(), 'xticklabels') | |
1806 | -p.setp(labels, color='k', fontsize=15) | |
1807 | -p.ylabel('Fractal Dimension',fontsize=20) | |
1808 | -labels2 = p.getp(p.gca(), 'yticklabels') | |
1809 | -p.setp(labels2, color='k', fontsize=15) | |
1810 | -p.legend(('overall prefactor','prefactor small clusters', 'prefactor large clusters')) | |
1811 | -#p.title('Evolution Fractal Dimension') | |
1812 | -p.grid(False) | |
1813 | - #cluster_name="number_cluster_vs_time2%05d"%my_config | |
1814 | -cluster_name="Evolution_prefactors.pdf" | |
1815 | -p.savefig(cluster_name) | |
1572 | +# fig = p.figure() | |
1573 | +# axes = fig.gca() | |
1574 | + | |
1575 | +# axes.plot(time,prefactor_R,"k^",time,prefactor_small_R,"ro"\ | |
1576 | +# ,time,prefactor_large_R,"bx") | |
1577 | +# p.xlabel('Dimensionless Time',fontsize=20) | |
1578 | +# labels = p.getp(p.gca(), 'xticklabels') | |
1579 | +# p.setp(labels, color='k', fontsize=15) | |
1580 | +# p.ylabel('Fractal Dimension',fontsize=20) | |
1581 | +# labels2 = p.getp(p.gca(), 'yticklabels') | |
1582 | +# p.setp(labels2, color='k', fontsize=15) | |
1583 | +# p.legend(('overall prefactor','prefactor small clusters', 'prefactor large clusters')) | |
1584 | +# #p.title('Evolution Fractal Dimension') | |
1585 | +# p.grid(False) | |
1586 | +# #cluster_name="number_cluster_vs_time2%05d"%my_config | |
1587 | +# cluster_name="Evolution_prefactors.pdf" | |
1588 | +# p.savefig(cluster_name) | |
1816 | 1589 | |
1817 | -p.clf() | |
1590 | +# p.clf() | |
1818 | 1591 | |
1819 | 1592 | |
1820 | 1593 |
@@ -1833,203 +1606,203 @@ | ||
1833 | 1606 | #print "time[ini_conf:fin_conf], ", time[ini_conf:fin_conf] |
1834 | 1607 | |
1835 | 1608 | |
1836 | -fig = p.figure() | |
1837 | -axes = fig.gca() | |
1838 | - | |
1839 | - | |
1840 | -axes.plot(time,my_fractal_dim,"k^") | |
1841 | -p.xlabel('Dimensionless Time',fontsize=20) | |
1842 | -labels = p.getp(p.gca(), 'xticklabels') | |
1843 | -p.setp(labels, color='k', fontsize=15) | |
1844 | -p.ylabel('Fractal Dimension',fontsize=20) | |
1845 | -labels2 = p.getp(p.gca(), 'yticklabels') | |
1846 | -p.setp(labels2, color='k', fontsize=15) | |
1847 | -#p.legend(('from power-law fitting','from linear fitting on log-log')) | |
1848 | -#p.title('Evolution Fractal Dimension') | |
1849 | -p.grid(False) | |
1850 | - #cluster_name="number_cluster_vs_time2%05d"%my_config | |
1851 | -cluster_name="Evolution_fractal_dimension-no-mean.pdf" | |
1852 | -p.savefig(cluster_name) | |
1853 | - | |
1854 | -p.clf() | |
1855 | - | |
1856 | - | |
1857 | - | |
1858 | - | |
1859 | -fig = p.figure() | |
1860 | -axes = fig.gca() | |
1861 | - | |
1862 | -axes.plot(time,my_fra_low,"k^") | |
1863 | -p.xlabel('Dimensionless Time',fontsize=20) | |
1864 | -labels = p.getp(p.gca(), 'xticklabels') | |
1865 | -p.setp(labels, color='k', fontsize=15) | |
1866 | -p.ylabel('Fractal Dimension',fontsize=20) | |
1867 | -labels2 = p.getp(p.gca(), 'yticklabels') | |
1868 | -p.setp(labels2, color='k', fontsize=15) | |
1869 | -#p.legend(('from power-law fitting','from linear fitting on log-log')) | |
1870 | -p.title('Evolution Fractal Dimension for small clusters') | |
1871 | -p.grid(False) | |
1872 | - #cluster_name="number_cluster_vs_time2%05d"%my_config | |
1873 | -cluster_name="Evolution_fractal_dimension-no-mean-small-clusters.pdf" | |
1874 | -p.savefig(cluster_name) | |
1875 | - | |
1876 | -p.clf() | |
1877 | - | |
1878 | - | |
1879 | - | |
1880 | - | |
1881 | -fig = p.figure() | |
1882 | -axes = fig.gca() | |
1883 | - | |
1884 | -axes.plot(time,my_fra_high,"k^") | |
1885 | -p.xlabel('Dimensionless Time',fontsize=20) | |
1886 | -labels = p.getp(p.gca(), 'xticklabels') | |
1887 | -p.setp(labels, color='k', fontsize=15) | |
1888 | -p.ylabel('Fractal Dimension',fontsize=20) | |
1889 | -labels2 = p.getp(p.gca(), 'yticklabels') | |
1890 | -p.setp(labels2, color='k', fontsize=15) | |
1891 | -#p.legend(('from power-law fitting','from linear fitting on log-log')) | |
1892 | -p.title('Evolution Fractal Dimension for large clusters') | |
1893 | -p.grid(False) | |
1894 | - #cluster_name="number_cluster_vs_time2%05d"%my_config | |
1895 | -cluster_name="Evolution_fractal_dimension-no-mean-large-clusters.pdf" | |
1896 | -p.savefig(cluster_name) | |
1897 | - | |
1898 | -p.clf() | |
1899 | - | |
1900 | - | |
1901 | - | |
1902 | - | |
1903 | - | |
1904 | -fig = p.figure() | |
1905 | -axes = fig.gca() | |
1906 | - | |
1907 | - | |
1908 | - | |
1909 | -axes.plot(time,my_fractal_dim2, "bo",\ | |
1910 | - time,my_fractal_dim2,linewidth=2.) | |
1911 | -p.xlabel('Time') | |
1912 | -p.ylabel('Fitted D_f') | |
1913 | -#p.legend(('from power-law fitting','from linear fitting on log-log')) | |
1914 | -p.title('Evolution Fractal Dimension from R_g') | |
1915 | -p.grid(True) | |
1916 | - #cluster_name="number_cluster_vs_time2%05d"%my_config | |
1917 | -cluster_name="Evolution_fractal_dimension_from_mean.pdf" | |
1918 | -p.savefig(cluster_name) | |
1609 | +# fig = p.figure() | |
1610 | +# axes = fig.gca() | |
1611 | + | |
1612 | + | |
1613 | +# axes.plot(time,my_fractal_dim,"k^") | |
1614 | +# p.xlabel('Dimensionless Time',fontsize=20) | |
1615 | +# labels = p.getp(p.gca(), 'xticklabels') | |
1616 | +# p.setp(labels, color='k', fontsize=15) | |
1617 | +# p.ylabel('Fractal Dimension',fontsize=20) | |
1618 | +# labels2 = p.getp(p.gca(), 'yticklabels') | |
1619 | +# p.setp(labels2, color='k', fontsize=15) | |
1620 | +# #p.legend(('from power-law fitting','from linear fitting on log-log')) | |
1621 | +# #p.title('Evolution Fractal Dimension') | |
1622 | +# p.grid(False) | |
1623 | +# #cluster_name="number_cluster_vs_time2%05d"%my_config | |
1624 | +# cluster_name="Evolution_fractal_dimension-no-mean.pdf" | |
1625 | +# p.savefig(cluster_name) | |
1919 | 1626 | |
1920 | -p.clf() | |
1921 | - | |
1922 | - | |
1923 | -fig = p.figure() | |
1924 | -axes = fig.gca() | |
1925 | - | |
1926 | - | |
1927 | -axes.plot(time,my_fractal_dim3, "bo",\ | |
1928 | - time,my_fractal_dim3,linewidth=2.) | |
1929 | -p.xlabel('Time') | |
1930 | -p.ylabel('Fitted D_f') | |
1931 | -#p.legend(('from power-law fitting','from linear fitting on log-log')) | |
1932 | -p.title('Evolution Fractal Dimension from R_g') | |
1933 | -p.grid(True) | |
1934 | - #cluster_name="number_cluster_vs_time2%05d"%my_config | |
1935 | -cluster_name="Evolution_fractal_dimension_from_mean_log.pdf" | |
1936 | -p.savefig(cluster_name) | |
1937 | - | |
1938 | -p.clf() | |
1939 | - | |
1940 | - | |
1941 | -fig = p.figure() | |
1942 | -axes = fig.gca() | |
1943 | - | |
1944 | - | |
1945 | - | |
1946 | - | |
1947 | -axes.plot(time,r_stat, "bo") | |
1948 | -p.xlabel('Time') | |
1949 | -p.ylabel('R of the fitted fractal dimension') | |
1950 | -#p.legend(('from power-law fitting','from linear fitting on log-log')) | |
1951 | -p.title('R calculation') | |
1952 | -p.grid(True) | |
1953 | - #cluster_name="number_cluster_vs_time2%05d"%my_config | |
1954 | -cluster_name="r_statistics.pdf" | |
1955 | -p.savefig(cluster_name) | |
1956 | - | |
1957 | -p.clf() | |
1958 | - | |
1959 | - | |
1960 | - | |
1961 | -fig = p.figure() | |
1962 | -axes = fig.gca() | |
1963 | - | |
1964 | - | |
1965 | - | |
1966 | -axes.plot(time,r_stat_low, "bo") | |
1967 | -p.xlabel('Time') | |
1968 | -p.ylabel('R of the fitted fractal dimension') | |
1969 | -#p.legend(('from power-law fitting','from linear fitting on log-log')) | |
1970 | -p.title('R calculation for small clusters') | |
1971 | -p.grid(True) | |
1972 | - #cluster_name="number_cluster_vs_time2%05d"%my_config | |
1973 | -cluster_name="r_statistics_small_clusters.pdf" | |
1974 | -p.savefig(cluster_name) | |
1627 | +# p.clf() | |
1628 | + | |
1629 | + | |
1630 | + | |
1631 | + | |
1632 | +# fig = p.figure() | |
1633 | +# axes = fig.gca() | |
1634 | + | |
1635 | +# axes.plot(time,my_fra_low,"k^") | |
1636 | +# p.xlabel('Dimensionless Time',fontsize=20) | |
1637 | +# labels = p.getp(p.gca(), 'xticklabels') | |
1638 | +# p.setp(labels, color='k', fontsize=15) | |
1639 | +# p.ylabel('Fractal Dimension',fontsize=20) | |
1640 | +# labels2 = p.getp(p.gca(), 'yticklabels') | |
1641 | +# p.setp(labels2, color='k', fontsize=15) | |
1642 | +# #p.legend(('from power-law fitting','from linear fitting on log-log')) | |
1643 | +# p.title('Evolution Fractal Dimension for small clusters') | |
1644 | +# p.grid(False) | |
1645 | +# #cluster_name="number_cluster_vs_time2%05d"%my_config | |
1646 | +# cluster_name="Evolution_fractal_dimension-no-mean-small-clusters.pdf" | |
1647 | +# p.savefig(cluster_name) | |
1975 | 1648 | |
1976 | -p.clf() | |
1977 | - | |
1978 | - | |
1979 | - | |
1980 | -fig = p.figure() | |
1981 | -axes = fig.gca() | |
1982 | - | |
1983 | - | |
1984 | -axes.plot(time,r_stat_high, "bo") | |
1985 | -p.xlabel('Time') | |
1986 | -p.ylabel('R of the fitted fractal dimension') | |
1987 | -#p.legend(('from power-law fitting','from linear fitting on log-log')) | |
1988 | -p.title('R calculation for large clusters') | |
1989 | -p.grid(True) | |
1990 | - #cluster_name="number_cluster_vs_time2%05d"%my_config | |
1991 | -cluster_name="r_statistics_large_clusters.pdf" | |
1992 | -p.savefig(cluster_name) | |
1649 | +# p.clf() | |
1650 | + | |
1651 | + | |
1652 | + | |
1653 | + | |
1654 | +# fig = p.figure() | |
1655 | +# axes = fig.gca() | |
1656 | + | |
1657 | +# axes.plot(time,my_fra_high,"k^") | |
1658 | +# p.xlabel('Dimensionless Time',fontsize=20) | |
1659 | +# labels = p.getp(p.gca(), 'xticklabels') | |
1660 | +# p.setp(labels, color='k', fontsize=15) | |
1661 | +# p.ylabel('Fractal Dimension',fontsize=20) | |
1662 | +# labels2 = p.getp(p.gca(), 'yticklabels') | |
1663 | +# p.setp(labels2, color='k', fontsize=15) | |
1664 | +# #p.legend(('from power-law fitting','from linear fitting on log-log')) | |
1665 | +# p.title('Evolution Fractal Dimension for large clusters') | |
1666 | +# p.grid(False) | |
1667 | +# #cluster_name="number_cluster_vs_time2%05d"%my_config | |
1668 | +# cluster_name="Evolution_fractal_dimension-no-mean-large-clusters.pdf" | |
1669 | +# p.savefig(cluster_name) | |
1993 | 1670 | |
1994 | -p.clf() | |
1995 | - | |
1996 | - | |
1997 | - | |
1998 | - | |
1999 | -fig = p.figure() | |
2000 | -axes = fig.gca() | |
2001 | - | |
2002 | - | |
2003 | -axes.plot(time,delta_df, "bo") | |
2004 | -p.xlabel('Time') | |
2005 | -p.ylabel('Uncertainty on the fractal dimension') | |
2006 | -#p.legend(('from power-law fitting','from linear fitting on log-log')) | |
2007 | -p.title('Evolution Fractal Dimension from R_g') | |
2008 | -p.grid(True) | |
2009 | - #cluster_name="number_cluster_vs_time2%05d"%my_config | |
2010 | -cluster_name="delta_df.pdf" | |
2011 | -p.savefig(cluster_name) | |
1671 | +# p.clf() | |
1672 | + | |
1673 | + | |
1674 | + | |
1675 | + | |
1676 | + | |
1677 | +# fig = p.figure() | |
1678 | +# axes = fig.gca() | |
1679 | + | |
1680 | + | |
1681 | + | |
1682 | +# axes.plot(time,my_fractal_dim2, "bo",\ | |
1683 | +# time,my_fractal_dim2,linewidth=2.) | |
1684 | +# p.xlabel('Time') | |
1685 | +# p.ylabel('Fitted D_f') | |
1686 | +# #p.legend(('from power-law fitting','from linear fitting on log-log')) | |
1687 | +# p.title('Evolution Fractal Dimension from R_g') | |
1688 | +# p.grid(True) | |
1689 | +# #cluster_name="number_cluster_vs_time2%05d"%my_config | |
1690 | +# cluster_name="Evolution_fractal_dimension_from_mean.pdf" | |
1691 | +# p.savefig(cluster_name) | |
2012 | 1692 | |
2013 | -p.clf() | |
2014 | - | |
2015 | - | |
2016 | -fig = p.figure() | |
2017 | -axes = fig.gca() | |
2018 | - | |
2019 | - | |
2020 | -choice_inf=s.where(s.isinf(std_err == 0)) | |
2021 | - | |
2022 | -axes.plot(time[choice_inf],std_err[choice_inf], "bo") | |
2023 | -p.xlabel('Time') | |
2024 | -p.ylabel('Std error on 1/fractal dimension') | |
2025 | -#p.legend(('from power-law fitting','from linear fitting on log-log')) | |
2026 | -p.title('Standard error on 1/fractal dimension') | |
2027 | -p.grid(True) | |
2028 | - #cluster_name="number_cluster_vs_time2%05d"%my_config | |
2029 | -cluster_name="std_err_1_over_D_f.pdf" | |
2030 | -p.savefig(cluster_name) | |
1693 | +# p.clf() | |
1694 | + | |
1695 | + | |
1696 | +# fig = p.figure() | |
1697 | +# axes = fig.gca() | |
1698 | + | |
1699 | + | |
1700 | +# axes.plot(time,my_fractal_dim3, "bo",\ | |
1701 | +# time,my_fractal_dim3,linewidth=2.) | |
1702 | +# p.xlabel('Time') | |
1703 | +# p.ylabel('Fitted D_f') | |
1704 | +# #p.legend(('from power-law fitting','from linear fitting on log-log')) | |
1705 | +# p.title('Evolution Fractal Dimension from R_g') | |
1706 | +# p.grid(True) | |
1707 | +# #cluster_name="number_cluster_vs_time2%05d"%my_config | |
1708 | +# cluster_name="Evolution_fractal_dimension_from_mean_log.pdf" | |
1709 | +# p.savefig(cluster_name) | |
2031 | 1710 | |
2032 | -p.clf() | |
1711 | +# p.clf() | |
1712 | + | |
1713 | + | |
1714 | +# fig = p.figure() | |
1715 | +# axes = fig.gca() | |
1716 | + | |
1717 | + | |
1718 | + | |
1719 | + | |
1720 | +# axes.plot(time,r_stat, "bo") | |
1721 | +# p.xlabel('Time') | |
1722 | +# p.ylabel('R of the fitted fractal dimension') | |
1723 | +# #p.legend(('from power-law fitting','from linear fitting on log-log')) | |
1724 | +# p.title('R calculation') | |
1725 | +# p.grid(True) | |
1726 | +# #cluster_name="number_cluster_vs_time2%05d"%my_config | |
1727 | +# cluster_name="r_statistics.pdf" | |
1728 | +# p.savefig(cluster_name) | |
1729 | + | |
1730 | +# p.clf() | |
1731 | + | |
1732 | + | |
1733 | + | |
1734 | +# fig = p.figure() | |
1735 | +# axes = fig.gca() | |
1736 | + | |
1737 | + | |
1738 | + | |
1739 | +# axes.plot(time,r_stat_low, "bo") | |
1740 | +# p.xlabel('Time') | |
1741 | +# p.ylabel('R of the fitted fractal dimension') | |
1742 | +# #p.legend(('from power-law fitting','from linear fitting on log-log')) | |
1743 | +# p.title('R calculation for small clusters') | |
1744 | +# p.grid(True) | |
1745 | +# #cluster_name="number_cluster_vs_time2%05d"%my_config | |
1746 | +# cluster_name="r_statistics_small_clusters.pdf" | |
1747 | +# p.savefig(cluster_name) | |
1748 | + | |
1749 | +# p.clf() | |
1750 | + | |
1751 | + | |
1752 | + | |
1753 | +# fig = p.figure() | |
1754 | +# axes = fig.gca() | |
1755 | + | |
1756 | + | |
1757 | +# axes.plot(time,r_stat_high, "bo") | |
1758 | +# p.xlabel('Time') | |
1759 | +# p.ylabel('R of the fitted fractal dimension') | |
1760 | +# #p.legend(('from power-law fitting','from linear fitting on log-log')) | |
1761 | +# p.title('R calculation for large clusters') | |
1762 | +# p.grid(True) | |
1763 | +# #cluster_name="number_cluster_vs_time2%05d"%my_config | |
1764 | +# cluster_name="r_statistics_large_clusters.pdf" | |
1765 | +# p.savefig(cluster_name) | |
1766 | + | |
1767 | +# p.clf() | |
1768 | + | |
1769 | + | |
1770 | + | |
1771 | + | |
1772 | +# fig = p.figure() | |
1773 | +# axes = fig.gca() | |
1774 | + | |
1775 | + | |
1776 | +# axes.plot(time,delta_df, "bo") | |
1777 | +# p.xlabel('Time') | |
1778 | +# p.ylabel('Uncertainty on the fractal dimension') | |
1779 | +# #p.legend(('from power-law fitting','from linear fitting on log-log')) | |
1780 | +# p.title('Evolution Fractal Dimension from R_g') | |
1781 | +# p.grid(True) | |
1782 | +# #cluster_name="number_cluster_vs_time2%05d"%my_config | |
1783 | +# cluster_name="delta_df.pdf" | |
1784 | +# p.savefig(cluster_name) | |
1785 | + | |
1786 | +# p.clf() | |
1787 | + | |
1788 | + | |
1789 | +# fig = p.figure() | |
1790 | +# axes = fig.gca() | |
1791 | + | |
1792 | + | |
1793 | +# choice_inf=s.where(s.isinf(std_err == 0)) | |
1794 | + | |
1795 | +# axes.plot(time[choice_inf],std_err[choice_inf], "bo") | |
1796 | +# p.xlabel('Time') | |
1797 | +# p.ylabel('Std error on 1/fractal dimension') | |
1798 | +# #p.legend(('from power-law fitting','from linear fitting on log-log')) | |
1799 | +# p.title('Standard error on 1/fractal dimension') | |
1800 | +# p.grid(True) | |
1801 | +# #cluster_name="number_cluster_vs_time2%05d"%my_config | |
1802 | +# cluster_name="std_err_1_over_D_f.pdf" | |
1803 | +# p.savefig(cluster_name) | |
1804 | + | |
1805 | +# p.clf() | |
2033 | 1806 | |
2034 | 1807 | |
2035 | 1808 |
@@ -2611,24 +2384,24 @@ | ||
2611 | 2384 | df_time_aver_vec[:]=1./lin_fit2[0] |
2612 | 2385 | |
2613 | 2386 | |
2614 | -fig = p.figure() | |
2615 | -axes = fig.gca() | |
2616 | - | |
2617 | -axes.errorbar(time,my_fractal_dim,yerr=delta_df, linewidth=2. ) | |
2618 | - | |
2619 | -axes.errorbar(time,my_fractal_dim_small,yerr=delta_df_small,\ | |
2620 | - label="Fractal dimension for small clusters",linewidth=2.) | |
2621 | - | |
2622 | -axes.errorbar(time,my_fractal_dim_large,yerr=delta_df_large,\ | |
2623 | - label="Fractal dimension for small clusters",linewidth=2.) | |
2624 | - | |
2625 | -#p.ylim(1.4,2.6) | |
2626 | -#axes.legend() | |
2627 | -p.xlabel('Time') | |
2628 | -p.ylabel('Fractal dimension') | |
2629 | -p.savefig("time_evolution_D_f_with_error_bars_all.pdf") | |
2387 | +# fig = p.figure() | |
2388 | +# axes = fig.gca() | |
2389 | + | |
2390 | +# axes.errorbar(time,my_fractal_dim,yerr=delta_df, linewidth=2. ) | |
2391 | + | |
2392 | +# axes.errorbar(time,my_fractal_dim_small,yerr=delta_df_small,\ | |
2393 | +# label="Fractal dimension for small clusters",linewidth=2.) | |
2394 | + | |
2395 | +# axes.errorbar(time,my_fractal_dim_large,yerr=delta_df_large,\ | |
2396 | +# label="Fractal dimension for small clusters",linewidth=2.) | |
2397 | + | |
2398 | +# #p.ylim(1.4,2.6) | |
2399 | +# #axes.legend() | |
2400 | +# p.xlabel('Time') | |
2401 | +# p.ylabel('Fractal dimension') | |
2402 | +# p.savefig("time_evolution_D_f_with_error_bars_all.pdf") | |
2630 | 2403 | |
2631 | -p.clf() | |
2404 | +# p.clf() | |
2632 | 2405 | |
2633 | 2406 | |
2634 | 2407 |
@@ -3187,57 +2960,57 @@ | ||
3187 | 2960 | |
3188 | 2961 | |
3189 | 2962 | |
3190 | -fig = p.figure() | |
3191 | -axes = fig.gca() | |
3192 | - | |
3193 | - | |
3194 | -axes.errorbar(time,prefactor_small_R_raw,yerr=delta_prefactor_small_R_raw) | |
3195 | -axes.errorbar(time,prefactor_large_R_raw,yerr=delta_prefactor_large_R_raw) | |
3196 | -axes.errorbar(time,prefactor_R_raw,yerr=delta_prefactor_R_raw) | |
3197 | - | |
3198 | -# axes.errorbar(time[ini_conf:fin_conf],prefactor_small_R_raw,yerr=delta_prefactor_small_R_raw,"ko",\ | |
3199 | -# time[ini_conf:fin_conf],prefactor_large_R_raw,yerr=delta_prefactor_large_R_raw, "r+",\ | |
3200 | -# time[ini_conf:fin_conf],prefactor_R_raw,yerr=delta_prefactor_R_raw, "bx") | |
3201 | - | |
3202 | - | |
3203 | -#p.ylim(1.4,3.) | |
3204 | -p.xlabel('Time') | |
3205 | -p.ylabel('Raw prefactor and error bars') | |
3206 | -#p.legend(('from power-law fitting','from linear fitting on log-log')) | |
3207 | -#p.title('Evolution Fractal Dimension from R_g') | |
3208 | -#p.grid(True) | |
3209 | - #cluster_name="number_cluster_vs_time2%05d"%my_config | |
3210 | -#cluster_name="std_err_D_f.pdf" | |
3211 | -p.savefig("time_evolution_raw_prefactor_with_error_bars.pdf") | |
2963 | +# fig = p.figure() | |
2964 | +# axes = fig.gca() | |
2965 | + | |
2966 | + | |
2967 | +# axes.errorbar(time,prefactor_small_R_raw,yerr=delta_prefactor_small_R_raw) | |
2968 | +# axes.errorbar(time,prefactor_large_R_raw,yerr=delta_prefactor_large_R_raw) | |
2969 | +# axes.errorbar(time,prefactor_R_raw,yerr=delta_prefactor_R_raw) | |
2970 | + | |
2971 | +# # axes.errorbar(time[ini_conf:fin_conf],prefactor_small_R_raw,yerr=delta_prefactor_small_R_raw,"ko",\ | |
2972 | +# # time[ini_conf:fin_conf],prefactor_large_R_raw,yerr=delta_prefactor_large_R_raw, "r+",\ | |
2973 | +# # time[ini_conf:fin_conf],prefactor_R_raw,yerr=delta_prefactor_R_raw, "bx") | |
2974 | + | |
2975 | + | |
2976 | +# #p.ylim(1.4,3.) | |
2977 | +# p.xlabel('Time') | |
2978 | +# p.ylabel('Raw prefactor and error bars') | |
2979 | +# #p.legend(('from power-law fitting','from linear fitting on log-log')) | |
2980 | +# #p.title('Evolution Fractal Dimension from R_g') | |
2981 | +# #p.grid(True) | |
2982 | +# #cluster_name="number_cluster_vs_time2%05d"%my_config | |
2983 | +# #cluster_name="std_err_D_f.pdf" | |
2984 | +# p.savefig("time_evolution_raw_prefactor_with_error_bars.pdf") | |
3212 | 2985 | |
3213 | -p.clf() | |
3214 | - | |
3215 | - | |
3216 | - | |
3217 | -fig = p.figure() | |
3218 | -axes = fig.gca() | |
3219 | - | |
3220 | - | |
3221 | -axes.errorbar(time,prefactor_small_R,yerr=delta_prefactor_small_R) | |
3222 | -axes.errorbar(time,prefactor_large_R,yerr=delta_prefactor_large_R) | |
3223 | -axes.errorbar(time,prefactor_R,yerr=delta_prefactor_R) | |
3224 | - | |
3225 | -# axes.errorbar(time[ini_conf:fin_conf],prefactor_small_R_raw,yerr=delta_prefactor_small_R_raw,"ko",\ | |
3226 | -# time[ini_conf:fin_conf],prefactor_large_R_raw,yerr=delta_prefactor_large_R_raw, "r+",\ | |
3227 | -# time[ini_conf:fin_conf],prefactor_R_raw,yerr=delta_prefactor_R_raw, "bx") | |
3228 | - | |
3229 | - | |
3230 | -#p.ylim(1.4,3.) | |
3231 | -p.xlabel('Time') | |
3232 | -p.ylabel('Prefactor and error bars') | |
3233 | -#p.legend(('from power-law fitting','from linear fitting on log-log')) | |
3234 | -#p.title('Evolution Fractal Dimension from R_g') | |
3235 | -#p.grid(True) | |
3236 | - #cluster_name="number_cluster_vs_time2%05d"%my_config | |
3237 | -#cluster_name="std_err_D_f.pdf" | |
3238 | -p.savefig("time_evolution_prefactor_with_error_bars.pdf") | |
2986 | +# p.clf() | |
2987 | + | |
2988 | + | |
2989 | + | |
2990 | +# fig = p.figure() | |
2991 | +# axes = fig.gca() | |
2992 | + | |
2993 | + | |
2994 | +# axes.errorbar(time,prefactor_small_R,yerr=delta_prefactor_small_R) | |
2995 | +# axes.errorbar(time,prefactor_large_R,yerr=delta_prefactor_large_R) | |
2996 | +# axes.errorbar(time,prefactor_R,yerr=delta_prefactor_R) | |
2997 | + | |
2998 | +# # axes.errorbar(time[ini_conf:fin_conf],prefactor_small_R_raw,yerr=delta_prefactor_small_R_raw,"ko",\ | |
2999 | +# # time[ini_conf:fin_conf],prefactor_large_R_raw,yerr=delta_prefactor_large_R_raw, "r+",\ | |
3000 | +# # time[ini_conf:fin_conf],prefactor_R_raw,yerr=delta_prefactor_R_raw, "bx") | |
3001 | + | |
3002 | + | |
3003 | +# #p.ylim(1.4,3.) | |
3004 | +# p.xlabel('Time') | |
3005 | +# p.ylabel('Prefactor and error bars') | |
3006 | +# #p.legend(('from power-law fitting','from linear fitting on log-log')) | |
3007 | +# #p.title('Evolution Fractal Dimension from R_g') | |
3008 | +# #p.grid(True) | |
3009 | +# #cluster_name="number_cluster_vs_time2%05d"%my_config | |
3010 | +# #cluster_name="std_err_D_f.pdf" | |
3011 | +# p.savefig("time_evolution_prefactor_with_error_bars.pdf") | |
3239 | 3012 | |
3240 | -p.clf() | |
3013 | +# p.clf() | |
3241 | 3014 | |
3242 | 3015 | |
3243 | 3016 |