Télécharger la liste

Description du projet

PCP (Pattern Classification Program) is a machine learning
program for supervised classification of
patterns. It runs in interactive and batch modes, and
implements the following machine learning algorithms and
methods: k-means clustering, Fisher's linear discriminant,
dimension reduction using Singular Value Decomposition,
Principal Component Analysis, feature subset selection,
Bayes error estimation, parametric classifiers (linear and
quadratic), pseudo-inverse linear discriminant, k-Nearest
Neighbor method, neural networks, Support Vector
Machine algorithm (SVM), model selection for SVM, cross-validation, and bagging
(committee)
classification.

Système requise

System requirement is not defined
Information regarding Project Releases and Project Resources. Note that the information here is a quote from Freecode.com page, and the downloads themselves may not be hosted on OSDN.

2006-02-04 03:20 Retour à la liste release
2.1

Ce communiqué de crée le fichier de prédiction pour la prédiction pcp.rcl MLP, MLP met en œuvre le choix du modèle, met en œuvre K-NN sélection de modèles, dispose d'informations supplémentaires dans la prédiction fichier de classe du pavillon (pcp.rcl classement correct, TP, FN, FO, et TN drapeaux les deux cas, la classe), en retire une mémoire importante manutention défaut de l'algorithme de sélection qui conduisent à l'avant pauvres (calcul) la performance, applique la région faisable pour nu dans Nu-SVM, et change le nombre par défaut de contre-expériences de validation de 10 à 1.
Tags: Major feature enhancements
This release creates the prediction file pcp.rcl for MLP prediction, implements MLP model selection, implements k-NN model selection, has additional information in the class prediction file pcp.rcl (correct classification flag, TP, FN, FP, and TN flags for two-class cases), removes a major memory handling defect in the forward selection algorithm that lead to poor (computational) performance, enforces the feasible region for nu in NU-SVM, and changes the default number of cross-validation experiments from 10 to 1.

Project Resources